Meligkotsidou Loukia, Fearnhead Paul
Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
Genetics. 2007 Sep;177(1):347-58. doi: 10.1534/genetics.107.071910. Epub 2007 Jun 11.
We consider inference for demographic models and parameters based upon postprocessing the output of an MCMC method that generates samples of genealogical trees (from the posterior distribution for a specific prior distribution of the genealogy). This approach has the advantage of taking account of the uncertainty in the inference for the tree when making inferences about the demographic model and can be computationally efficient in terms of reanalyzing data under a wide variety of models. We consider a (simulation-consistent) estimate of the likelihood for variable population size models, which uses importance sampling, and propose two new approximate likelihoods, one for migration models and one for continuous spatial models.
我们考虑基于对MCMC方法输出进行后处理来推断人口模型和参数,该MCMC方法生成系谱树样本(来自特定系谱先验分布的后验分布)。这种方法的优点是在推断人口模型时考虑了树推断中的不确定性,并且在根据各种模型重新分析数据方面计算效率较高。我们考虑一种用于可变种群大小模型的似然(模拟一致)估计,它使用重要性抽样,并提出两种新的近似似然,一种用于迁移模型,一种用于连续空间模型。