Suppr超能文献

使用低能γ/ X射线源通过近距离放射疗法进行金纳米颗粒辅助放射治疗(GNRT)的剂量学可行性。

The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.

作者信息

Cho Sang Hyun, Jones Bernard L, Krishnan Sunil

机构信息

Nuclear/Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA.

出版信息

Phys Med Biol. 2009 Aug 21;54(16):4889-905. doi: 10.1088/0031-9155/54/16/004. Epub 2009 Jul 27.

Abstract

The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E(avg) < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: (125)I, 50 kVp and (169)Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using (125)I, 50 kVp and (169)Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g(-1), macroscopic dose enhancement was 116, 92 and 108% for (125)I, 50 kVp and (169)Yb, respectively. For a tumor loaded with 7 mg Au g(-1), it was 68, 57 and 44% at 1 cm from the center of the source for (125)I, 50 kVp and (169)Yb, respectively. The estimated MDEF values for (169)Yb were remarkably larger than those for (192)Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the presence of gold nanoparticles during low-energy gamma-/x-ray irradiation. The radiation sources considered in this study are currently available and tumor gold concentration levels considered in this investigation are deemed achievable. Therefore, the current results strongly suggest that GNRT can be successfully implemented via brachytherapy with low energy gamma-/x-ray sources, especially with a high dose rate (169)Yb source.

摘要

金纳米颗粒在肿瘤内的优先聚集以及由于金的高原子序数导致的光电吸收增加,共同说明了在金纳米颗粒辅助放射治疗(GNRT)期间显著提高肿瘤剂量的可能性。在临床上实施GNRT的众多可行方法中,使用低能γ/ X射线源(即E(平均)<100 keV)的近距离放射治疗方法似乎非常可行且有前景,因为它可能很容易满足GNRT的一些技术和临床要求。因此,本研究调查了使用以下源实施GNRT的剂量学可行性:(125)I、50 kVp和(169)Yb。具体而言,进行了蒙特卡罗(MC)计算,以确定宏观剂量增强因子(MDEF),其定义为在肿瘤照射期间肿瘤区域内存在和不存在金纳米颗粒时的平均剂量之比,以及载有金纳米颗粒的肿瘤内的光电子/俄歇电子能谱。本研究表明,使用(125)I、50 kVp和(169)Yb源以及金纳米颗粒可实现显著的肿瘤剂量增强(例如>40%)。当在载有18 mg Au g(-1)的肿瘤内距源中心1.0 cm处计算时,(125)I、50 kVp和(169)Yb的宏观剂量增强分别为116%、92%和108%。对于载有7 mg Au g(-1)的肿瘤,在距源中心1 cm处,(125)I、50 kVp和(169)Yb的宏观剂量增强分别为68%、57%和44%。对于(169)Yb,估计的MDEF值明显大于(192)Ir的MDEF值,对于18 mg Au和7 mg Au的情况,平均分别高出约70%和30%。当前的MC研究还表明,在低能γ/ X射线照射期间,由于金纳米颗粒的存在,肿瘤区域内的光电子注量和能谱发生了显著变化(例如超过两个数量级),并且俄歇电子的产生量显著增加(例如与光电子数量相当)。本研究中考虑的放射源目前是可用的,本研究中考虑的肿瘤金浓度水平被认为是可以实现的。因此,当前结果强烈表明,GNRT可以通过使用低能γ/ X射线源,特别是高剂量率(169)Yb源的近距离放射治疗成功实施。

相似文献

引用本文的文献

4

本文引用的文献

1
Detection of Gold Nanoshells in Tumors Using Diffuse Optical Spectroscopy.利用漫射光谱法检测肿瘤中的金纳米壳
IEEE J Sel Top Quantum Electron. 2007 Nov-Dec;13(6):1715-1720. doi: 10.1109/jstqe.2007.910804.
7
Radiotherapy enhancement with gold nanoparticles.金纳米颗粒用于放射治疗增敏
J Pharm Pharmacol. 2008 Aug;60(8):977-85. doi: 10.1211/jpp.60.8.0005.
9
Multifunctional magnetic nanoparticles for targeted imaging and therapy.用于靶向成像和治疗的多功能磁性纳米颗粒。
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1241-1251. doi: 10.1016/j.addr.2008.03.014. Epub 2008 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验