Dept, Crop Genetics, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
Plant Methods. 2009 Jul 28;5:10. doi: 10.1186/1746-4811-5-10.
Dense genetic maps, together with the efficiency and accuracy of their construction, are integral to genetic studies and marker assisted selection for plant breeding. High-throughput multiplex markers that are robust and reproducible can contribute to both efficiency and accuracy. Multiplex markers are often dominant and so have low information content, this coupled with the pressure to find alternatives to radio-labelling, has led us to adapt the SSAP (sequence specific amplified polymorphism) marker method from a 33P labelling procedure to fluorescently tagged markers analysed from an automated ABI 3730 xl platform. This method is illustrated for multiplexed SSAP markers based on retrotransposon insertions of pea and is applicable for the rapid and efficient generation of markers from genomes where repetitive element sequence information is available for primer design. We cross-reference SSAP markers previously generated using the 33P manual PAGE system to fluorescent peaks, and use these high-throughput fluorescent SSAP markers for further genetic studies in Pisum.
The optimal conditions for the fluorescent-labelling method used a triplex set of primers in the PCR. These included a fluorescently labelled specific primer together with its unlabelled counterpart, plus an adapter-based primer with two bases of selection on the 3' end. The introduction of the unlabelled specific primer helped to optimise the fluorescent signal across the range of fragment sizes expected, and eliminated the need for extensive dilutions of PCR amplicons. The software (GeneMarker Version 1.6) used for the high-throughput data analysis provided an assessment of amplicon size in nucleotides, peak areas and fluorescence intensity in a table format, so providing additional information content for each marker. The method has been tested in a small-scale study with 12 pea accessions resulting in 467 polymorphic fluorescent SSAP markers of which 260 were identified as having been mapped previously using the radio-labelling technique. Heterozygous individuals from pea cultivar crosses were identifiable after peak area data analysis using the fluorescent SSAP method.
As well as developing a rapid, and high-throughput marker method for genetic studies, the fluorescent SSAP system improved the accuracy of amplicon scoring, increased the available marker number, improved allele discrimination, and was sensitive enough to identify heterozygous loci in F1 and F2 progeny, indicating the potential to develop high-throughput codominant SSAPs.
密集的遗传图谱,加上其构建的效率和准确性,是遗传研究和标记辅助选择的重要组成部分。高效、准确的高通量多重标记可以提高效率和准确性。多重标记通常是显性的,因此信息量低,再加上寻找放射性标记替代品的压力,促使我们将豌豆的 SSAP(序列特异性扩增多态性)标记方法从 33P 标记程序改编为荧光标记的自动 ABI 3730xl 平台分析的标记。该方法以豌豆反转录转座子插入的多重 SSAP 标记为例,适用于基因组中存在重复元件序列信息可供引物设计的情况下,快速有效地生成标记。我们将以前使用 33P 手动 PAGE 系统生成的 SSAP 标记与荧光峰进行交叉参考,并将这些高通量荧光 SSAP 标记用于豌豆的进一步遗传研究。
荧光标记方法的最佳条件是在 PCR 中使用三引物组。其中包括一个荧光标记的特异性引物及其非标记对应物,以及一个带有两个碱基选择的基于接头的引物。非标记特异性引物的引入有助于优化荧光信号在预期的片段大小范围内,并且消除了对 PCR 扩增子的广泛稀释的需要。用于高通量数据分析的软件(GeneMarker 版本 1.6)以表格形式提供了对扩增子大小、峰面积和荧光强度的评估,从而为每个标记提供了更多的信息内容。该方法已在一项涉及 12 个豌豆品系的小规模研究中进行了测试,产生了 467 个多态性荧光 SSAP 标记,其中 260 个标记先前使用放射性标记技术进行了映射。在使用荧光 SSAP 方法进行峰面积数据分析后,可识别豌豆品种杂交的杂合个体。
该方法不仅开发了一种用于遗传研究的快速、高通量标记方法,而且还提高了扩增子评分的准确性,增加了可用标记数量,提高了等位基因的辨别能力,足以在 F1 和 F2 后代中识别杂合基因座,表明有可能开发高通量共显性 SSAPs。