Pan Yu, Leifert Annika, Ruau David, Neuss Sabine, Bornemann Jörg, Schmid Günter, Brandau Wolfgang, Simon Ulrich, Jahnen-Dechent Willi
Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany.
Small. 2009 Sep;5(18):2067-76. doi: 10.1002/smll.200900466.
Gold nanoparticles (AuNPs) are generally considered nontoxic, similar to bulk gold, which is inert and biocompatible. AuNPs of diameter 1.4 nm capped with triphenylphosphine monosulfonate (TPPMS), Au1.4MS, are much more cytotoxic than 15-nm nanoparticles (Au15MS) of similar chemical composition. Here, major cell-death pathways are studied and it is determined that the cytotoxicity is caused by oxidative stress. Indicators of oxidative stress, reactive oxygen species (ROS), mitochondrial potential and integrity, and mitochondrial substrate reduction are all compromised. Genome-wide expression profiling using DNA gene arrays indicates robust upregulation of stress-related genes after 6 and 12 h of incubation with a 2 x IC50 concentration of Au1.4MS but not with Au15MS nanoparticles. The caspase inhibitor Z-VAD-fmk does not rescue the cells, which suggests that necrosis, not apoptosis, is the predominant pathway at this concentration. Pretreatment of the nanoparticles with reducing agents/antioxidants N-acetylcysteine, glutathione, and TPPMS reduces the toxicity of Au1.4MS. AuNPs of similar size but capped with glutathione (Au1.1GSH) likewise do not induce oxidative stress. Besides the size dependency of AuNP toxicity, ligand chemistry is a critical parameter determining the degree of cytotoxicity. AuNP exposure most likely causes oxidative stress that is amplified by mitochondrial damage. Au1.4MS nanoparticle cytotoxicity is associated with oxidative stress, endogenous ROS production, and depletion of the intracellular antioxidant pool.
金纳米颗粒(AuNPs)通常被认为是无毒的,与块状金类似,块状金是惰性且具有生物相容性的。直径为1.4纳米的三苯基膦单磺酸盐(TPPMS)包覆的金纳米颗粒(Au1.4MS)比具有相似化学成分的15纳米纳米颗粒(Au15MS)的细胞毒性大得多。在此,研究了主要的细胞死亡途径,并确定细胞毒性是由氧化应激引起的。氧化应激指标、活性氧(ROS)、线粒体电位和完整性以及线粒体底物还原均受到损害。使用DNA基因阵列进行的全基因组表达谱分析表明,在与2倍半数抑制浓度(IC50)的Au1.4MS孵育6小时和12小时后,应激相关基因有强烈上调,但与Au15MS纳米颗粒孵育时则没有。半胱天冬酶抑制剂Z-VAD-fmk不能挽救细胞,这表明在该浓度下,坏死而非凋亡是主要途径。用还原剂/抗氧化剂N-乙酰半胱氨酸、谷胱甘肽和TPPMS对纳米颗粒进行预处理可降低Au1.4MS的毒性。类似大小但用谷胱甘肽包覆的金纳米颗粒(Au1.1GSH)同样不会诱导氧化应激。除了金纳米颗粒毒性的尺寸依赖性外,配体化学是决定细胞毒性程度的关键参数。金纳米颗粒暴露很可能导致氧化应激,而线粒体损伤会放大这种应激。Au1.4MS纳米颗粒的细胞毒性与氧化应激、内源性ROS产生以及细胞内抗氧化剂池的消耗有关。