Suppr超能文献

骨质疏松症治疗的靶向方法。

Approaches to the targeting of treatment for osteoporosis.

作者信息

Kanis John A, McCloskey Eugene V, Johansson Helena, Oden Anders

机构信息

WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK.

出版信息

Nat Rev Rheumatol. 2009 Aug;5(8):425-31. doi: 10.1038/nrrheum.2009.139.

Abstract

Fractures are a clinical consequence of osteoporosis, and represent a major cause of morbidity and mortality worldwide. Several treatments have been shown to decrease the risk of fracture, but problems arise in identifying individuals at high fracture risk so that treatments can be effectively targeted. The case for widespread population screening using bone mineral density testing is weak, as these tests lack sensitivity. Case-finding algorithms are available in many countries, but differ markedly in their approaches. Recent developments in fracture risk assessment include the availability of the FRAX (WHO Collaborating Center for Bone Metabolic Disease, Sheffield, UK) tool, which integrates the weight of clinical risk factors for fracture risk with or without information on bone mineral density, and computes the 10-year probability of fracture. The tool increases sensitivity without trading specificity, and is now being used in the reappraisal of clinical guidelines.

摘要

骨折是骨质疏松症的临床后果,是全球发病和死亡的主要原因。已有多种治疗方法被证明可降低骨折风险,但在识别骨折高风险个体以便有效进行针对性治疗方面仍存在问题。使用骨密度检测进行广泛人群筛查的理由并不充分,因为这些检测缺乏敏感性。许多国家都有病例发现算法,但方法差异显著。骨折风险评估的最新进展包括FRAX工具(英国谢菲尔德世界卫生组织骨代谢疾病合作中心)的出现,该工具整合了有无骨密度信息情况下的骨折临床风险因素权重,并计算10年骨折概率。该工具在不牺牲特异性的情况下提高了敏感性,目前正用于临床指南的重新评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验