INSERM UMR 738, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France.
Pharm Res. 2010 Jan;27(1):92-104. doi: 10.1007/s11095-009-9980-5. Epub 2009 Oct 30.
The main objective of this work is to compare the standard bioequivalence tests based on individual estimates of the area under the curve and the maximal concentration obtained by non-compartmental analysis (NCA) to those based on individual empirical Bayes estimates (EBE) obtained by nonlinear mixed effects models.
We evaluate by simulation the precision of sample means estimates and the type I error of bioequivalence tests for both approaches. Crossover trials are simulated under H ( 0 ) using different numbers of subjects (N) and of samples per subject (n). We simulate concentration-time profiles with different variability settings for the between-subject and within-subject variabilities and for the variance of the residual error.
Bioequivalence tests based on NCA show satisfactory properties with low and high variabilities, except when the residual error is high, which leads to a very poor type I error, or when n is small, which leads to biased estimates. Tests based on EBE lead to an increase of the type I error, when the shrinkage is above 20%, which occurs notably when NCA fails.
For small n or data with high residual error, tests based on a global data analysis should be considered instead of those based on individual estimates.
本研究的主要目的是比较基于个体曲线下面积和非房室分析(NCA)获得的最大浓度的个体估计的标准生物等效性检验与基于非线性混合效应模型获得的个体经验贝叶斯估计(EBE)的检验。
我们通过模拟评估了这两种方法的样本均值估计的精度和生物等效性检验的Ⅰ类错误。在 H(0)下,我们使用不同数量的受试者(N)和每个受试者的样本数(n)来模拟交叉试验。我们模拟了具有不同的个体间和个体内变异性以及残差误差方差设置的浓度-时间曲线。
基于 NCA 的生物等效性检验具有良好的性质,无论是在低变异性还是高变异性的情况下,除了当残差误差较高时,这会导致非常差的Ⅰ类错误,或者当 n 较小时,这会导致有偏差的估计。当收缩率超过 20%时,基于 EBE 的检验会导致Ⅰ类错误增加,这在 NCA 失败时尤为明显。
对于 n 较小或残差误差较高的数据,应该考虑基于全局数据分析的检验,而不是基于个体估计的检验。