Suppr超能文献

在不常分裂的毛囊干细胞微环境中存在不同的自我更新和分化阶段。

Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells.

作者信息

Zhang Ying V, Cheong Janice, Ciapurin Nichita, McDermitt David J, Tumbar Tudorita

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Cell Stem Cell. 2009 Sep 4;5(3):267-78. doi: 10.1016/j.stem.2009.06.004. Epub 2009 Aug 6.

Abstract

In homeostasis of adult vertebrate tissues, stem cells are thought to self-renew by infrequent and asymmetric divisions that generate another stem cell daughter and a progenitor daughter cell committed to differentiate. This model is based largely on in vivo invertebrate or in vitro mammal studies. Here, we examine the dynamic behavior of adult hair follicle stem cells in their normal setting by employing mice with repressible H2B-GFP expression to track cell divisions and Cre-inducible mice to perform long-term single-cell lineage tracing. We provide direct evidence for the infrequent stem cell division model in intact tissue. Moreover, we find that differentiation of progenitor cells occurs at different times and tissue locations than self-renewal of stem cells. Distinct fates of differentiation or self-renewal are assigned to individual cells in a temporal-spatial manner. We propose that large clusters of tissue stem cells behave as populations whose maintenance involves unidirectional daughter-cell-fate decisions.

摘要

在成年脊椎动物组织的稳态中,干细胞被认为通过不频繁且不对称的分裂进行自我更新,这种分裂产生另一个干细胞子代和一个致力于分化的祖细胞子代。该模型主要基于体内无脊椎动物或体外哺乳动物研究。在此,我们通过使用具有可抑制的H2B - GFP表达的小鼠来追踪细胞分裂,并利用Cre诱导型小鼠进行长期单细胞谱系追踪,来研究成年毛囊干细胞在其正常环境中的动态行为。我们为完整组织中不频繁的干细胞分裂模型提供了直接证据。此外,我们发现祖细胞的分化发生在与干细胞自我更新不同的时间和组织位置。分化或自我更新的不同命运以时空方式分配给单个细胞。我们提出,大量的组织干细胞群表现为一个群体,其维持涉及单向的子细胞命运决定。

相似文献

1
Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells.
Cell Stem Cell. 2009 Sep 4;5(3):267-78. doi: 10.1016/j.stem.2009.06.004. Epub 2009 Aug 6.
3
Spatial organization within a niche as a determinant of stem-cell fate.
Nature. 2013 Oct 24;502(7472):513-8. doi: 10.1038/nature12602. Epub 2013 Oct 6.
4
5
Flexible fate determination ensures robust differentiation in the hair follicle.
Nat Cell Biol. 2018 Dec;20(12):1361-1369. doi: 10.1038/s41556-018-0232-y. Epub 2018 Nov 12.
6
Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling.
Dev Biol. 2013 Jan 15;373(2):394-406. doi: 10.1016/j.ydbio.2012.10.021. Epub 2012 Oct 26.
7
Dynamics between stem cells, niche, and progeny in the hair follicle.
Cell. 2011 Jan 7;144(1):92-105. doi: 10.1016/j.cell.2010.11.049.
8
NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche.
Nature. 2013 Mar 7;495(7439):98-102. doi: 10.1038/nature11847. Epub 2013 Feb 6.
10
Lineage tracing of hair follicle stem cells in epidermal whole mounts.
Methods Mol Biol. 2013;989:45-60. doi: 10.1007/978-1-62703-330-5_5.

引用本文的文献

1
MCL‑1 safeguards activated hair follicle stem cells to enable adult hair regeneration.
Nat Commun. 2025 Mar 22;16(1):2829. doi: 10.1038/s41467-025-58150-5.
2
Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy.
Stem Cell Res Ther. 2025 Jan 29;16(1):29. doi: 10.1186/s13287-025-04152-5.
3
Ontogeny of Skin Stem Cells and Molecular Underpinnings.
Curr Issues Mol Biol. 2024 Jul 28;46(8):8118-8147. doi: 10.3390/cimb46080481.
4
Hair follicles modulate skin barrier function.
Cell Rep. 2024 Jul 23;43(7):114347. doi: 10.1016/j.celrep.2024.114347. Epub 2024 Jun 26.
5
A transit-amplifying progenitor with biphasic behavior contributes to epidermal renewal.
Development. 2024 Jun 15;151(12). doi: 10.1242/dev.202389. Epub 2024 Jun 27.
6
Hair follicles modulate skin barrier function.
bioRxiv. 2024 Apr 27:2024.04.23.590728. doi: 10.1101/2024.04.23.590728.
7
Biology of melanocytes in mammals.
Front Cell Dev Biol. 2023 Nov 22;11:1309557. doi: 10.3389/fcell.2023.1309557. eCollection 2023.
8
Elevated stress response marks deeply quiescent reserve cells of gastric chief cells.
Commun Biol. 2023 Nov 20;6(1):1183. doi: 10.1038/s42003-023-05550-2.
9
The Rho GTPase exchange factor Vav2 promotes extensive age-dependent rewiring of the hair follicle stem cell transcriptome.
Front Cell Dev Biol. 2023 Sep 26;11:1252834. doi: 10.3389/fcell.2023.1252834. eCollection 2023.
10
Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration.
Mol Cells. 2023 Oct 31;46(10):573-578. doi: 10.14348/molcells.2023.0071. Epub 2023 Aug 31.

本文引用的文献

1
The tortoise and the hair: slow-cycling cells in the stem cell race.
Cell. 2009 May 29;137(5):811-9. doi: 10.1016/j.cell.2009.05.002.
2
A two-step mechanism for stem cell activation during hair regeneration.
Cell Stem Cell. 2009 Feb 6;4(2):155-69. doi: 10.1016/j.stem.2008.12.009.
3
Lgr5 marks cycling, yet long-lived, hair follicle stem cells.
Nat Genet. 2008 Nov;40(11):1291-9. doi: 10.1038/ng.239. Epub 2008 Oct 12.
4
Bmi1 is expressed in vivo in intestinal stem cells.
Nat Genet. 2008 Jul;40(7):915-20. doi: 10.1038/ng.165. Epub 2008 Jun 8.
5
Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells.
EMBO J. 2008 May 7;27(9):1309-20. doi: 10.1038/emboj.2008.72. Epub 2008 Apr 10.
6
Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.
Development. 2008 Mar;135(6):1059-68. doi: 10.1242/dev.012799. Epub 2008 Feb 6.
7
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.
Nature. 2008 Jan 17;451(7176):340-4. doi: 10.1038/nature06457.
8
Identification of stem cells in small intestine and colon by marker gene Lgr5.
Nature. 2007 Oct 25;449(7165):1003-7. doi: 10.1038/nature06196. Epub 2007 Oct 14.
9
Immortal strands? Give me a break.
Cell. 2007 Jun 29;129(7):1244-7. doi: 10.1016/j.cell.2007.06.017.
10
A single type of progenitor cell maintains normal epidermis.
Nature. 2007 Mar 8;446(7132):185-9. doi: 10.1038/nature05574. Epub 2007 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验