Muñoz-Bertomeu Jesús, Cascales-Miñana Borja, Mulet Jose Miguel, Baroja-Fernández Edurne, Pozueta-Romero Javier, Kuhn Josef M, Segura Juan, Ros Roc
Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Valencia, Spain.
Plant Physiol. 2009 Oct;151(2):541-58. doi: 10.1104/pp.109.143701. Epub 2009 Aug 12.
Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and sterility. In spite of their low gene expression level as compared with other GAPDHs, GAPCp down-regulation leads to altered gene expression and to drastic changes in the sugar and amino acid balance of the plant. We demonstrate that GAPCps are important for the synthesis of serine in roots. Serine supplementation to the growth medium rescues root developmental arrest and restores normal levels of carbohydrates and sugar biosynthetic activities in gapcp double mutants. We provide evidence that the phosphorylated pathway of Ser biosynthesis plays an important role in supplying serine to roots. Overall, these studies provide insights into the in vivo functions of the GAPCps in plants. Our results emphasize the importance of the plastidial glycolytic pathway, and specifically of GAPCps, in plant primary metabolism.
糖酵解是一条核心代谢途径,在植物中,它发生在细胞质和质体中。糖酵解途径中的甘油醛-3-磷酸脱氢酶(GAPDH)催化甘油醛-3-磷酸转化为1,3-二磷酸甘油酸,同时将NAD(+)还原为NADH。细胞质(GAPCs)和质体(GAPCps)中的GAPDH活性均已被描述。然而,质体同工型的体内功能仍未明确。在这项研究中,我们鉴定出了两种拟南芥叶绿体/质体定位的GAPDH同工型(GAPCp1和GAPCp2)。gapcp双突变体表现出根发育停滞、矮化和不育的严重表型。尽管与其他GAPDH相比,它们的基因表达水平较低,但GAPCp的下调会导致基因表达改变,并使植物的糖和氨基酸平衡发生剧烈变化。我们证明GAPCps对根中丝氨酸的合成很重要。在生长培养基中添加丝氨酸可挽救根发育停滞,并恢复gapcp双突变体中碳水化合物和糖生物合成活性的正常水平。我们提供证据表明丝氨酸生物合成的磷酸化途径在为根供应丝氨酸方面起着重要作用。总体而言,这些研究深入了解了GAPCps在植物中的体内功能。我们的结果强调了质体糖酵解途径,特别是GAPCps在植物初级代谢中的重要性。