Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands.
PLoS One. 2009 Aug 14;4(8):e6646. doi: 10.1371/journal.pone.0006646.
Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic syndrome are insufficiently understood.
To identify the mechanisms underlying the pathological changes associated with short and long-term exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF) diets was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related pathways. The major changes in gene expression take place during the early (day 3) and late (week 12) phases of HF feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late repression) and lipogenic/adipogenic pathways (early repression, late activation). Transcriptional network analysis identifies NF-kappaB, NEMO, Akt, PPARgamma and SREBP1 as the key controllers of these processes and suggests that direct regulatory interactions between these factors may govern the transition from early (stressed, inflammatory) to late (pathological, steatotic) hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of hepatic gene expression and triglyceride levels.
The transition from an inflammatory to a steatotic transcriptional program, possibly driven by the reciprocal activation of NF-kappaB and PPARgamma regulators, emerges as the principal signature of the hepatic adaptation to excess dietary fat. These findings may be of essential interest for devising new strategies aiming to prevent the progression of high-fat diet induced pathologies.
过多摄入膳食脂肪是引发肥胖和与代谢综合征相关病理的一个重要因素。但人们对与饮食诱导的代谢综合征发生和进展相关的细胞过程还知之甚少。
为了确定与短期和长期暴露于过量膳食脂肪相关的病理变化的机制,研究人员使用微阵列监测了喂食标准饮食和两种高脂肪(HF)饮食的 ApoE3Leiden 小鼠的肝基因表达,研究持续了 16 周。对 1663 个 HF 反应基因的功能特征分析揭示了脂质、胆固醇和氧化代谢、免疫和炎症反应以及应激相关途径的紊乱。基因表达的主要变化发生在 HF 喂养的早期(第 3 天)和晚期(第 12 周)。这也与这两个阶段之间许多 HF 影响途径的特征性相反调节有关。最显著的转变发生在炎症/免疫途径(早期激活,晚期抑制)和生脂/生脂途径(早期抑制,晚期激活)的表达上。转录网络分析确定 NF-kappaB、NEMO、Akt、PPARgamma 和 SREBP1 是这些过程的关键控制器,并表明这些因素之间的直接调节相互作用可能控制从早期(应激、炎症)到晚期(HF 喂养的病理、脂肪变性)肝适应的转变。通过肝基因表达分析观察到的这种转变通过血浆中炎症蛋白的表达和晚期肝甘油三酯含量的增加得到证实。此外,通过回归分析肝基因表达和甘油三酯水平,揭示了在 16 周高脂肪喂养期间最能预测肝脂肪积累的基因。
从炎症到脂肪变性转录程序的转变,可能是由 NF-kappaB 和 PPARgamma 调节剂的相互激活驱动的,这是肝适应过量膳食脂肪的主要特征。这些发现对于设计旨在防止高脂肪饮食诱导的病理进展的新策略可能具有重要意义。