Lim Jeanette L, Demont M Edwin
Department of Biology, St Francis Xavier University, PO Box 5000, Antigonish, NS, Canada, B2G 2W5.
J Exp Biol. 2009 Sep 1;212(17):2731-45. doi: 10.1242/jeb.026922.
The American lobster (Homarus americanus) displays a diverse set of locomotory behaviours that includes tail flips, walking and paddling. Paddling is carried out by the four pairs of paddle-shaped pleopods on the ventral abdomen. Although it is recognized that pleopod-generated fluid flows have some locomotory role in adults, reports on their relative importance in locomotion are inconsistent. This paper integrates experimental kinematics and hydrodynamics of lobster pleopod beating to determine the mechanism and magnitude of pleopod force production. A kinematic analysis of pleopod beating in live lobsters showed that the pleopods execute an adlocomotory metachronal beating pattern. We modelled in vivo pleopod kinematics with a set of simple trigonometric functions, and used these functions to program a mechanical lobster model consisting of motor-driven pleopods on a lobster abdomen exoskeleton. Based on flow visualizations obtained from applying particle image velocimetry to the lobster model, we propose that the unsteady metachronal kinematics of the pleopods can maximize thrust by exploiting forces arising from individual pleopod activity and interactions among adjacent pairs. The pleopods continuously entrain fluid surrounding the lobster and create a caudally directed fluid jet oriented parallel to the substratum. Inputting wake morphology and velocity data into a simplified model for steady jet thrust showed that the pleopods of the lobster model produced 27-54 mN of thrust, which is comparable to the propulsive forces generated by other proficient swimmers. These results suggest that lobster pleopods are capable of producing forces of a magnitude that could assist the walking legs in forward propulsion.
美洲龙虾(美洲螯龙虾)展现出一系列多样的运动行为,包括尾部翻转、行走和划水。划水是由腹部腹面的四对桨状腹肢完成的。尽管人们认识到腹肢产生的流体流动在成年龙虾的运动中具有一定作用,但关于它们在运动中相对重要性的报道并不一致。本文整合了龙虾腹肢拍动的实验运动学和流体动力学,以确定腹肢产生力的机制和大小。对活体龙虾腹肢拍动的运动学分析表明,腹肢执行一种有助于运动的相继交替拍动模式。我们用一组简单的三角函数对活体腹肢运动学进行建模,并使用这些函数为一个机械龙虾模型编程,该模型由安装在龙虾腹部外骨骼上的电动腹肢组成。基于对龙虾模型应用粒子图像测速法获得的流动可视化结果,我们提出,腹肢不稳定的相继交替运动学可以通过利用单个腹肢活动以及相邻腹肢对之间的相互作用所产生的力来最大化推力。腹肢持续带动龙虾周围的流体,并形成一股平行于基质向后的流体射流。将尾流形态和速度数据输入一个简化的稳定射流推力模型表明,龙虾模型的腹肢产生了27 - 54毫牛的推力,这与其他熟练游泳者产生的推进力相当。这些结果表明,龙虾腹肢能够产生足以协助步行腿向前推进的力。