Suppr超能文献

使用具有可配置模拟VLSI的脉冲神经元和自调节可塑性突触神经网络对相关模式进行分类。

Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses.

作者信息

Giulioni Massimilian, Pannunzi Mario, Badoni Davide, Dante Vittorio, Del Giudice Paolo

机构信息

Italian National Institute of Health, Rome, Italy.

出版信息

Neural Comput. 2009 Nov;21(11):3106-29. doi: 10.1162/neco.2009.08-07-599.

Abstract

We describe the implementation and illustrate the learning performance of an analog VLSI network of 32 integrate-and-fire neurons with spike-frequency adaptation and 2016 Hebbian bistable spike-driven stochastic synapses, endowed with a self-regulating plasticity mechanism, which avoids unnecessary synaptic changes. The synaptic matrix can be flexibly configured and provides both recurrent and external connectivity with address-event representation compliant devices. We demonstrate a marked improvement in the efficiency of the network in classifying correlated patterns, owing to the self-regulating mechanism.

摘要

我们描述了一个由32个具有脉冲频率适应功能的积分发放神经元和2016个赫布型双稳态脉冲驱动随机突触组成的模拟VLSI网络的实现,并展示了其学习性能。该网络具有一种自我调节的可塑性机制,可避免不必要的突触变化。突触矩阵可以灵活配置,并通过符合地址事件表示的设备提供循环和外部连接。由于自我调节机制,我们证明了该网络在对相关模式进行分类时效率有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验