Suppr超能文献

神经形态电子系统中的认知综合。

Synthesizing cognition in neuromorphic electronic systems.

机构信息

Institute of Neuroinformatics, University of Zurich and Eidgenössiche Technische Hochschule Zurich, 8057 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3468-76. doi: 10.1073/pnas.1212083110. Epub 2013 Jul 22.

Abstract

The quest to implement intelligent processing in electronic neuromorphic systems lacks methods for achieving reliable behavioral dynamics on substrates of inherently imprecise and noisy neurons. Here we report a solution to this problem that involves first mapping an unreliable hardware layer of spiking silicon neurons into an abstract computational layer composed of generic reliable subnetworks of model neurons and then composing the target behavioral dynamics as a "soft state machine" running on these reliable subnets. In the first step, the neural networks of the abstract layer are realized on the hardware substrate by mapping the neuron circuit bias voltages to the model parameters. This mapping is obtained by an automatic method in which the electronic circuit biases are calibrated against the model parameters by a series of population activity measurements. The abstract computational layer is formed by configuring neural networks as generic soft winner-take-all subnetworks that provide reliable processing by virtue of their active gain, signal restoration, and multistability. The necessary states and transitions of the desired high-level behavior are then easily embedded in the computational layer by introducing only sparse connections between some neurons of the various subnets. We demonstrate this synthesis method for a neuromorphic sensory agent that performs real-time context-dependent classification of motion patterns observed by a silicon retina.

摘要

在电子神经形态系统中实现智能处理的探索缺乏在固有不精确和嘈杂神经元的衬底上实现可靠行为动力学的方法。在这里,我们报告了一个解决方案,该方案涉及首先将不可靠的硬件层的尖峰硅神经元映射到由通用可靠的模型神经元子网组成的抽象计算层,然后将目标行为动力学组合为在这些可靠子网上运行的“软状态机”。在第一步中,通过将神经元电路偏置电压映射到模型参数,在硬件衬底上实现抽象层的神经网络。这种映射是通过一种自动方法获得的,其中通过一系列群体活动测量来校准电子电路偏置与模型参数。抽象计算层由配置为通用软胜者全取子网的神经网络形成,这些子网通过其主动增益、信号恢复和多稳定性提供可靠的处理。然后,通过在各个子网的一些神经元之间引入稀疏连接,很容易在计算层中嵌入所需的高级行为的必要状态和转换。我们通过引入硅视网膜观察到的运动模式的实时上下文相关分类来演示这种神经形态感觉剂的综合方法。

相似文献

1
Synthesizing cognition in neuromorphic electronic systems.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):E3468-76. doi: 10.1073/pnas.1212083110. Epub 2013 Jul 22.
2
A systematic method for configuring VLSI networks of spiking neurons.
Neural Comput. 2011 Oct;23(10):2457-97. doi: 10.1162/NECO_a_00182. Epub 2011 Jul 6.
3
Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
Front Neurosci. 2018 Nov 13;12:717. doi: 10.3389/fnins.2018.00717. eCollection 2018.
4
Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
Neural Netw. 2020 Jan;121:366-386. doi: 10.1016/j.neunet.2019.09.024. Epub 2019 Sep 26.
5
A neuromorphic network for generic multivariate data classification.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2081-6. doi: 10.1073/pnas.1303053111. Epub 2014 Jan 27.
6
Dynamic neural fields as a step toward cognitive neuromorphic architectures.
Front Neurosci. 2014 Jan 22;7:276. doi: 10.3389/fnins.2013.00276. eCollection 2013.
7
Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
Neural Netw. 2013 Sep;45:39-49. doi: 10.1016/j.neunet.2013.02.011. Epub 2013 Mar 7.
8
Hardware-Based Hopfield Neuromorphic Computing for Fall Detection.
Sensors (Basel). 2020 Dec 17;20(24):7226. doi: 10.3390/s20247226.
9
Towards spike-based machine intelligence with neuromorphic computing.
Nature. 2019 Nov;575(7784):607-617. doi: 10.1038/s41586-019-1677-2. Epub 2019 Nov 27.
10
A forecast-based STDP rule suitable for neuromorphic implementation.
Neural Netw. 2012 Aug;32:3-14. doi: 10.1016/j.neunet.2012.02.018. Epub 2012 Feb 14.

引用本文的文献

2
The road to commercial success for neuromorphic technologies.
Nat Commun. 2025 Apr 15;16(1):3586. doi: 10.1038/s41467-025-57352-1.
3
A neuromorphic multi-scale approach for real-time heart rate and state detection.
Npj Unconv Comput. 2025;2(1):6. doi: 10.1038/s44335-025-00024-6. Epub 2025 Apr 2.
4
Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.
Nano Converg. 2025 Jan 18;12(1):2. doi: 10.1186/s40580-024-00472-z.
5
The backpropagation algorithm implemented on spiking neuromorphic hardware.
Nat Commun. 2024 Nov 8;15(1):9691. doi: 10.1038/s41467-024-53827-9.
6
Intelligent computation in cancer gene therapy.
Front Genet. 2024 Mar 14;15:1252246. doi: 10.3389/fgene.2024.1252246. eCollection 2024.
7
Neuromorphic learning, working memory, and metaplasticity in nanowire networks.
Sci Adv. 2023 Apr 21;9(16):eadg3289. doi: 10.1126/sciadv.adg3289.
8
Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
Front Neuroinform. 2023 Feb 10;17:941696. doi: 10.3389/fninf.2023.941696. eCollection 2023.
9
Adaptive cognition implemented with a context-aware and flexible neuron for next-generation artificial intelligence.
PNAS Nexus. 2022 Sep 29;1(5):pgac206. doi: 10.1093/pnasnexus/pgac206. eCollection 2022 Nov.
10
Synthetic neuromorphic computing in living cells.
Nat Commun. 2022 Sep 24;13(1):5602. doi: 10.1038/s41467-022-33288-8.

本文引用的文献

1
Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
IEEE Trans Biomed Circuits Syst. 2009 Feb;3(1):32-42. doi: 10.1109/TBCAS.2008.2005781.
2
A large-scale model of the functioning brain.
Science. 2012 Nov 30;338(6111):1202-5. doi: 10.1126/science.1225266.
3
Selective attention in multi-chip address-event systems.
Sensors (Basel). 2009;9(7):5076-8098. doi: 10.3390/s90705076. Epub 2009 Jun 26.
4
Frontiers in neuromorphic engineering.
Front Neurosci. 2011 Oct 10;5:118. doi: 10.3389/fnins.2011.00118. eCollection 2011.
5
6
Neuromorphic silicon neuron circuits.
Front Neurosci. 2011 May 31;5:73. doi: 10.3389/fnins.2011.00073. eCollection 2011.
7
A systematic method for configuring VLSI networks of spiking neurons.
Neural Comput. 2011 Oct;23(10):2457-97. doi: 10.1162/NECO_a_00182. Epub 2011 Jul 6.
8
Collective stability of networks of winner-take-all circuits.
Neural Comput. 2011 Mar;23(3):735-73. doi: 10.1162/NECO_a_00091. Epub 2010 Dec 16.
9
Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses.
Front Comput Neurosci. 2010 Oct 4;4:24. doi: 10.3389/fncom.2010.00024. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验