Suppr超能文献

非整倍体染色体在白色念珠菌的DNA转化过程中高度不稳定。

Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans.

作者信息

Bouchonville Kelly, Forche Anja, Tang Karen E S, Selmecki Anna, Berman Judith

机构信息

University of Minnesota, GCD, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.

出版信息

Eukaryot Cell. 2009 Oct;8(10):1554-66. doi: 10.1128/EC.00209-09. Epub 2009 Aug 21.

Abstract

Candida albicans strains tolerate aneuploidy, historically detected as karyotype alterations by pulsed-field gel electrophoresis and more recently revealed by array comparative genome hybridization, which provides a comprehensive and detailed description of gene copy number. Here, we first retrospectively analyzed 411 expression array experiments to predict the frequency of aneuploidy in different strains. As expected, significant levels of aneuploidy were seen in strains exposed to stress conditions, including UV light and/or sorbose treatment, as well as in strains that are resistant to antifungal drugs. More surprisingly, strains that underwent transformation with DNA displayed the highest frequency of chromosome copy number changes, with strains that were initially aneuploid exhibiting approximately 3-fold more copy number changes than strains that were initially diploid. We then prospectively analyzed the effect of lithium acetate (LiOAc) transformation protocols on the stability of trisomic chromosomes. Consistent with the retrospective analysis, the proportion of karyotype changes was highly elevated in strains carrying aneuploid chromosomes. We then tested the hypothesis that stresses conferred by heat and/or LiOAc exposure promote chromosome number changes during DNA transformation procedures. Indeed, a short pulse of very high temperature caused frequent gains and losses of multiple chromosomes or chromosome segments. Furthermore, milder heat exposure over longer periods caused increased levels of loss of heterozygosity. Nonetheless, aneuploid chromosomes were also unstable when strains were transformed by electroporation, which does not include a heat shock step. Thus, aneuploid strains are particularly prone to undergo changes in chromosome number during the stresses of DNA transformation protocols.

摘要

白色念珠菌菌株能够耐受非整倍体,历史上通过脉冲场凝胶电泳检测为核型改变,最近通过阵列比较基因组杂交得以揭示,该技术可对基因拷贝数进行全面而详细的描述。在此,我们首先回顾性分析了411个表达阵列实验,以预测不同菌株中非整倍体的频率。正如预期的那样,在暴露于应激条件下的菌株中观察到了显著水平的非整倍体,这些应激条件包括紫外线照射和/或山梨糖处理,以及对抗真菌药物耐药的菌株。更令人惊讶的是,用DNA进行转化的菌株显示出最高的染色体拷贝数变化频率,最初为非整倍体的菌株表现出的拷贝数变化比最初为二倍体的菌株多约3倍。然后,我们前瞻性地分析了醋酸锂(LiOAc)转化方案对三体染色体稳定性的影响。与回顾性分析一致,携带非整倍体染色体的菌株中核型变化的比例显著升高。然后,我们检验了这样一个假设,即热应激和/或LiOAc暴露所带来的应激会在DNA转化过程中促进染色体数目的变化。事实上,短时间的极高温脉冲导致多条染色体或染色体片段频繁增加和丢失。此外,长时间轻度热暴露导致杂合性丧失水平增加。尽管如此,当通过电穿孔(不包括热休克步骤)对菌株进行转化时,非整倍体染色体也不稳定。因此,在DNA转化方案的应激过程中,非整倍体菌株特别容易发生染色体数目的变化。

相似文献

1
Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans.
Eukaryot Cell. 2009 Oct;8(10):1554-66. doi: 10.1128/EC.00209-09. Epub 2009 Aug 21.
2
Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains.
Mol Microbiol. 2005 Mar;55(5):1553-65. doi: 10.1111/j.1365-2958.2005.04492.x.
3
The fitness costs and benefits of trisomy of each Candida albicans chromosome.
Genetics. 2021 Jun 24;218(2). doi: 10.1093/genetics/iyab056.
4
Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells.
Fungal Genet Biol. 2014 Sep;70:68-76. doi: 10.1016/j.fgb.2014.06.009. Epub 2014 Jul 17.
5
Aneuploidy Underlies Tolerance and Cross-Tolerance to Drugs in Candida parapsilosis.
Microbiol Spectr. 2021 Oct 31;9(2):e0050821. doi: 10.1128/Spectrum.00508-21. Epub 2021 Oct 6.
6
Genetic and phenotypic intra-species variation in Candida albicans.
Genome Res. 2015 Mar;25(3):413-25. doi: 10.1101/gr.174623.114. Epub 2014 Dec 11.
7
Transcriptional Regulation on Aneuploid Chromosomes in Divers Candida albicans Mutants.
Sci Rep. 2018 Jan 26;8(1):1630. doi: 10.1038/s41598-018-20106-9.
8
Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in Candida albicans.
Genetics. 2015 Jul;200(3):781-94. doi: 10.1534/genetics.115.178020. Epub 2015 May 18.
9
Susceptibility to Medium-Chain Fatty Acids Is Associated with Trisomy of Chromosome 7 in .
mSphere. 2019 Jun 26;4(3):e00402-19. doi: 10.1128/mSphere.00402-19.
10
Aneuploidy Enables Cross-Adaptation to Unrelated Drugs.
Mol Biol Evol. 2019 Aug 1;36(8):1768-1782. doi: 10.1093/molbev/msz104.

引用本文的文献

1
Strain background interacts with chromosome 7 aneuploidy to determine commensal and virulence phenotypes in Candida albicans.
PLoS Genet. 2025 Jun 27;21(6):e1011650. doi: 10.1371/journal.pgen.1011650. eCollection 2025 Jun.
2
Aneuploidy confers a unique transcriptional and phenotypic profile to Candida albicans.
Nat Commun. 2025 Apr 6;16(1):3287. doi: 10.1038/s41467-025-58457-3.
4
The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf001.
5
Evolution and strain diversity advance exploration of biology.
mSphere. 2024 Aug 28;9(8):e0064123. doi: 10.1128/msphere.00641-23. Epub 2024 Jul 16.
6
Strain background of interacts with to alter phenotypic switching.
Microbiology (Reading). 2024 Mar;170(3). doi: 10.1099/mic.0.001444.
7
Aneuploidy Can Be an Evolutionary Diversion on the Path to Adaptation.
Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae052.
9
The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress.
Annu Rev Microbiol. 2023 Sep 15;77:341-361. doi: 10.1146/annurev-micro-041320-112443. Epub 2023 Jun 12.
10

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Aneuploidy and improved growth are coincident but not causal in a yeast cancer model.
PLoS Biol. 2009 Jul;7(7):e1000161. doi: 10.1371/journal.pbio.1000161. Epub 2009 Jul 28.
3
Efficient and rapid identification of Candida albicans allelic status using SNP-RFLP.
FEMS Yeast Res. 2009 Oct;9(7):1061-9. doi: 10.1111/j.1567-1364.2009.00542.x. Epub 2009 Jun 22.
5
Evolution in Candida albicans populations during a single passage through a mouse host.
Genetics. 2009 Jul;182(3):799-811. doi: 10.1534/genetics.109.103325. Epub 2009 May 4.
6
A little CIN may cost a lot: revisiting aneuploidy and cancer.
Curr Opin Genet Dev. 2009 Feb;19(1):74-81. doi: 10.1016/j.gde.2008.12.004. Epub 2009 Feb 3.
7
The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
PLoS Genet. 2008 Dec;4(12):e1000303. doi: 10.1371/journal.pgen.1000303. Epub 2008 Dec 12.
9
Aneuploidy: cells losing their balance.
Genetics. 2008 Jun;179(2):737-46. doi: 10.1534/genetics.108.090878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验