Molecular, Cellular, and Network Excitability Laboratory, Department of Biomedical Sciences and Institute Born-Bunge, Universiteit Antwerpen, Wilrijk B-2610, Belgium.
Université Libre de Bruxelles (ULB), IRIBHM, and ULB Neuroscience Institute, Brussels B-1050, Belgium.
J Neurosci. 2019 Sep 25;39(39):7648-7663. doi: 10.1523/JNEUROSCI.3169-18.2019. Epub 2019 Jul 25.
Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit. No matter how we probe the brain, we find correlated neuronal activity over a variety of spatial and temporal scales. For the cerebral cortex, significant evidence has accumulated on trial-to-trial covariability in synaptic inputs activation, subthreshold membrane potential fluctuations, and output spike trains. Although we do not yet fully understand their origin and whether they are detrimental or beneficial for information processing, we believe that clarifying how correlations emerge is pivotal for understanding large-scale neuronal network dynamics and computation. Here, we report quantitative differences between excitatory and inhibitory cells, as they relay input correlations into output correlations. We explain this heterogeneity by simple biophysical models and provide the most experimentally validated test of a theory for the emergence of correlations.
神经元的相关电活动是皮质微电路的一个突出特征。尽管有越来越多的证据表明尖峰计数和亚阈膜电位的成对相关性,但对于不同类型的皮质神经元如何将相关输入转换为相关输出,人们知之甚少。我们研究了来自雌雄大鼠的新皮层脑片的锥体神经元和两类 5 层 GABA 能中间神经元,并使用动态钳产生的生理相关输入来刺激它们。我们发现,细胞类型之间的生理差异在其传递相关输入的能力方面表现出独特的特征。我们使用线性响应理论和计算模型深入了解细胞特性如何决定相关传递的增益和时间尺度,从而将单细胞特征与网络相互作用联系起来。我们的结果为各种类型的神经元细胞在皮质微电路中发挥功能不同的作用提供了进一步的依据。无论我们如何探测大脑,我们都会在各种空间和时间尺度上发现相关的神经元活动。对于大脑皮层,已经积累了大量关于突触输入激活、亚阈膜电位波动和输出尖峰序列的试验间可变性的证据。尽管我们还不完全理解它们的起源,以及它们是否对信息处理有害或有益,但我们相信阐明相关性是如何产生的对于理解大规模神经元网络动力学和计算至关重要。在这里,我们报告了兴奋性和抑制性细胞之间的定量差异,因为它们将输入相关性传递到输出相关性。我们通过简单的生物物理模型解释了这种异质性,并提供了对相关性出现理论的最实验验证测试。