Sabuncu Mert R, Balci Serdar K, Golland Polina
Computer Science and Artificial Intelligence Laboratory, MIT, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output is a small number of template images that represent different modes in a population. This is in contrast with traditional approaches that assume a single template to construct atlases. We validate and explore the algorithm in two experiments. First, we employ iCluster to partition a data set of 416 whole brain MR volumes of subjects aged 18-96 years into three sub-groups, which mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the second experiment, we run iCluster on a group of 30 patients with dementia and 30 age-matched healthy controls. The algorithm produced three modes that mainly corresponded to a sub-population of healthy controls, a sub-population of patients with dementia and a mixture group that contained both types. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional "modes".
我们提出了iCluster算法,这是一种快速且高效的算法,它能在使用参数化非线性变换模型对一组图像进行配准的同时,将这些图像聚类。输出的是少量代表群体中不同模式的模板图像。这与传统方法不同,传统方法假定使用单个模板来构建图谱。我们在两个实验中对该算法进行了验证和探索。首先,我们使用iCluster将416个年龄在18 - 96岁受试者的全脑磁共振体积数据集划分为三个亚组,这三个亚组主要对应不同年龄组。模板显示了这些年龄组之间显著的结构差异,证实了衰老研究中的先前发现。在第二个实验中,我们对30名痴呆患者和30名年龄匹配的健康对照者进行了iCluster分析。该算法产生了三种模式,主要对应健康对照者亚组、痴呆患者亚组以及包含这两种类型的混合组。这些结果表明,该算法可用于发现与有趣的结构或功能“模式”相对应的亚群体。