Suppr超能文献

通过混合建模发现图像群体的模式。

Discovering modes of an image population through mixture modeling.

作者信息

Sabuncu Mert R, Balci Serdar K, Golland Polina

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.

Abstract

We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output is a small number of template images that represent different modes in a population. This is in contrast with traditional approaches that assume a single template to construct atlases. We validate and explore the algorithm in two experiments. First, we employ iCluster to partition a data set of 416 whole brain MR volumes of subjects aged 18-96 years into three sub-groups, which mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the second experiment, we run iCluster on a group of 30 patients with dementia and 30 age-matched healthy controls. The algorithm produced three modes that mainly corresponded to a sub-population of healthy controls, a sub-population of patients with dementia and a mixture group that contained both types. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional "modes".

摘要

我们提出了iCluster算法,这是一种快速且高效的算法,它能在使用参数化非线性变换模型对一组图像进行配准的同时,将这些图像聚类。输出的是少量代表群体中不同模式的模板图像。这与传统方法不同,传统方法假定使用单个模板来构建图谱。我们在两个实验中对该算法进行了验证和探索。首先,我们使用iCluster将416个年龄在18 - 96岁受试者的全脑磁共振体积数据集划分为三个亚组,这三个亚组主要对应不同年龄组。模板显示了这些年龄组之间显著的结构差异,证实了衰老研究中的先前发现。在第二个实验中,我们对30名痴呆患者和30名年龄匹配的健康对照者进行了iCluster分析。该算法产生了三种模式,主要对应健康对照者亚组、痴呆患者亚组以及包含这两种类型的混合组。这些结果表明,该算法可用于发现与有趣的结构或功能“模式”相对应的亚群体。

相似文献

1
Discovering modes of an image population through mixture modeling.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
2
Image-driven population analysis through mixture modeling.
IEEE Trans Med Imaging. 2009 Sep;28(9):1473-87. doi: 10.1109/TMI.2009.2017942. Epub 2009 Mar 24.
3
Bayesian estimation of probabilistic atlas for anatomically-informed functional MRI group analyses.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):592-9. doi: 10.1007/978-3-642-40760-4_74.
4
A statistical parts-based appearance model of inter-subject variability.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):232-40. doi: 10.1007/11866565_29.
5
A log-Euclidean framework for statistics on diffeomorphisms.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):924-31. doi: 10.1007/11866565_113.
6
A statistical parts-based model of anatomical variability.
IEEE Trans Med Imaging. 2007 Apr;26(4):497-508. doi: 10.1109/TMI.2007.892510.
7
Constrained Gaussian mixture model framework for automatic segmentation of MR brain images.
IEEE Trans Med Imaging. 2006 Sep;25(9):1233-45. doi: 10.1109/tmi.2006.880668.
8
Spatially adaptive mixture modeling for analysis of FMRI time series.
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
9
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):815-22. doi: 10.1007/11866763_100.
10
Discovering structure in the space of activation profiles in fMRI.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1016-24. doi: 10.1007/978-3-540-85988-8_121.

引用本文的文献

1
Deep Learning Deformation Initialization for Rapid Groupwise Registration of Inhomogeneous Image Populations.
Front Neuroinform. 2019 May 14;13:34. doi: 10.3389/fninf.2019.00034. eCollection 2019.
2
Groupwise Morphometric Analysis Based on High Dimensional Clustering.
Conf Comput Vis Pattern Recognit Workshops. 2010 Jun;2010:47-54. doi: 10.1109/CVPRW.2010.5543438. Epub 2010 Aug 9.
3
From label fusion to correspondence fusion: a new approach to unbiased groupwise registration.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2012:956-963. doi: 10.1109/CVPR.2012.6247771.
4
Multiple Atlas construction from a heterogeneous brain MR image collection.
IEEE Trans Med Imaging. 2013 Mar;32(3):628-35. doi: 10.1109/TMI.2013.2239654. Epub 2013 Jan 14.
5
Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):254-61. doi: 10.1007/978-3-642-33418-4_32.
6
A statistical framework for inter-group image registration.
Neuroinformatics. 2012 Oct;10(4):367-78. doi: 10.1007/s12021-012-9156-z.
7
Morphological appearance manifolds for group-wise morphometric analysis.
Med Image Anal. 2011 Dec;15(6):814-29. doi: 10.1016/j.media.2011.06.003. Epub 2011 Jul 28.
8
Image Atlas Construction via Intrinsic Averaging on the Manifold of Images.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2010 Jun;2010:2933-2939. doi: 10.1109/CVPR.2010.5540035.
9
Grouping of Brain MR Images via Affinity Propagation.
Conf Proc (Midwest Symp Circuits Syst). 2009 May 24;2009:2425-2428. doi: 10.1109/ISCAS.2009.5118290.
10
GRAM: A framework for geodesic registration on anatomical manifolds.
Med Image Anal. 2010 Oct;14(5):633-42. doi: 10.1016/j.media.2010.06.001. Epub 2010 Jun 8.

本文引用的文献

1
Atlas stratification.
Med Image Anal. 2007 Oct;11(5):443-57. doi: 10.1016/j.media.2007.07.001. Epub 2007 Jul 25.
3
4
Automatic anatomical brain MRI segmentation combining label propagation and decision fusion.
Neuroimage. 2006 Oct 15;33(1):115-26. doi: 10.1016/j.neuroimage.2006.05.061. Epub 2006 Jul 24.
5
Least biased target selection in probabilistic atlas construction.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):419-26. doi: 10.1007/11566489_52.
6
An EM algorithm for shape classification based on level sets.
Med Image Anal. 2005 Oct;9(5):491-502. doi: 10.1016/j.media.2005.05.001.
7
Unbiased diffeomorphic atlas construction for computational anatomy.
Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.
8
Automatically parcellating the human cerebral cortex.
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.
10
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验