Suppr超能文献

一种基于肌电图的模型,用于估计脑卒中患者的肌肉力量和关节力矩。

An EMG-driven model to estimate muscle forces and joint moments in stroke patients.

机构信息

Center for Biomedical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, 19716, USA.

出版信息

Comput Biol Med. 2009 Dec;39(12):1083-8. doi: 10.1016/j.compbiomed.2009.09.002. Epub 2009 Oct 8.

Abstract

Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R(2) value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.

摘要

中风患者的肌肉活动和运动模式会发生改变。了解哪些肌肉受到影响以及它们如何导致病理模式,可以促进步态效率的提高。在本文中,我们提出了一种基于肌电图(EMG)的肌肉骨骼模型,以估计肌肉力量和关节力矩。使用四个中风后患者的步行时的特定于个体的跖屈和背屈主要踝关节肌肉的肌电图以及关节运动学作为模型的输入,以预测站立时的踝关节关节力矩。通过将模型输出与使用逆动力学计算的力矩进行比较,评估模型预测关节力矩的能力。该模型能够以可接受的精度预测踝关节力矩,其平均 R(2)值在 0.87 到 0.92 之间,均方根误差在 9.7%到 14.7%之间。这些值与健康受试者的先前结果一致,表明在该患者人群中进行基于肌电图的建模是可行的。我们希望这些模型能够为开发更有效的康复治疗方法并评估干预措施的效果提供临床见解。

相似文献

5
Co-contraction around the knee and the ankle joints during post-stroke gait.脑卒中后步态中膝关节和踝关节的共同收缩。
Eur J Phys Rehabil Med. 2018 Jun;54(3):380-387. doi: 10.23736/S1973-9087.17.04722-0. Epub 2017 Aug 29.
8
Comparison of methodologies to assess muscle co-contraction during gait.评估步态期间肌肉共同收缩的方法比较。
J Biomech. 2017 May 24;57:141-145. doi: 10.1016/j.jbiomech.2017.03.029. Epub 2017 Apr 9.
9
Comparison of electromyography and joint moment as indicators of co-contraction.肌电图与关节力矩对比分析肌肉协同收缩。
J Electromyogr Kinesiol. 2012 Aug;22(4):607-11. doi: 10.1016/j.jelekin.2012.02.001. Epub 2012 Feb 29.

引用本文的文献

3
Current developments in surface electromyography.表面肌电图的最新进展。
Turk J Med Sci. 2023 Mar 26;53(5):1019-1031. doi: 10.55730/1300-0144.5667. eCollection 2023.
5
EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization.基于包裹表面个性化的肌电图驱动的肌肉骨骼模型校准
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4235-4244. doi: 10.1109/TNSRE.2023.3323516. Epub 2023 Oct 31.
7
The influence of induced gait asymmetry on joint reaction forces.诱导步态不对称对关节反作用力的影响。
J Biomech. 2023 May;153:111581. doi: 10.1016/j.jbiomech.2023.111581. Epub 2023 Apr 17.

本文引用的文献

1
The heat of activation and the heat of shortening in a muscle twitch.肌肉收缩时的活化热与缩短热。
Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195-211. doi: 10.1098/rspb.1949.0019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验