Suppr超能文献

声驱动光学相干弹性成像技术用于测量材料力学性能。

Acoustomotive optical coherence elastography for measuring material mechanical properties.

机构信息

Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801, USA.

出版信息

Opt Lett. 2009 Oct 1;34(19):2894-6. doi: 10.1364/OL.34.002894.

Abstract

Acoustomotive optical coherence elastography (AM-OCE), a dynamic and internal excitation optical coherence elastography technique, is reported. Acoustic radiation force was used for internal mechanical excitation, and spectral-domain optical coherence tomography was used for detection. Mechanical properties of gelatin tissue phantoms were measured by AM-OCE and verified using rheometry results. Measured mechanical properties including shear moduli and shear damping parameters of the gelatin samples double when their polymer concentration increases from 3% to 4%. Spectral analysis was also performed on the acquired data, which improved the processing speed by a factor of 5 compared with a least-square fitting approach. Quantitative measurement, microscale resolution, and remote excitation are the main features of AM-OCE, which make the technique promising for measuring biomechanical properties.

摘要

声驱动光学相干弹性成像(AM-OCE)是一种动态的内部激励光学相干弹性成像技术,本文对此进行了报道。该技术使用声辐射力进行内部机械激励,同时使用光谱域光学相干断层扫描进行检测。通过 AM-OCE 对明胶组织模型的力学性能进行了测量,并结合流变仪的结果进行了验证。实验结果表明,当聚合物浓度从 3%增加到 4%时,明胶样本的剪切模量和剪切阻尼参数均增加了一倍。此外,还对采集到的数据进行了光谱分析,与最小二乘拟合方法相比,该方法的处理速度提高了 5 倍。AM-OCE 的主要特点是定量测量、微尺度分辨率和远程激励,这使其有望用于测量生物力学特性。

相似文献

1
Acoustomotive optical coherence elastography for measuring material mechanical properties.
Opt Lett. 2009 Oct 1;34(19):2894-6. doi: 10.1364/OL.34.002894.
3
Optical micro-scale mapping of dynamic biomechanical tissue properties.
Opt Express. 2008 Jul 21;16(15):11052-65. doi: 10.1364/oe.16.011052.
4
Acoustic radiation force optical coherence elastography: A preliminary study on biomechanical properties of trabecular meshwork.
J Biophotonics. 2023 May;16(5):e202200317. doi: 10.1002/jbio.202200317. Epub 2023 Jan 18.
5
Phase-resolved acoustic radiation force optical coherence elastography.
J Biomed Opt. 2012 Nov;17(11):110505. doi: 10.1117/1.JBO.17.11.110505.
6
Dynamic spectral-domain optical coherence elastography for tissue characterization.
Opt Express. 2010 Jun 21;18(13):14183-90. doi: 10.1364/OE.18.014183.
8
Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
Appl Opt. 2020 Dec 1;59(34):10739-10745. doi: 10.1364/AO.406190.
9
Lorentz force optical coherence elastography.
J Biomed Opt. 2016 Sep 1;21(9):90502. doi: 10.1117/1.JBO.21.9.090502.
10
Spatial resolution in dynamic optical coherence elastography.
J Biomed Opt. 2019 Sep;24(9):1-16. doi: 10.1117/1.JBO.24.9.096006.

引用本文的文献

1
Nanobomb optical coherence elastography in multilayered phantoms.
Biomed Opt Express. 2023 Oct 10;14(11):5670-5681. doi: 10.1364/BOE.502576. eCollection 2023 Nov 1.
3
Monte Carlo simulation of light scattering in tissue for the design of skin-like optical devices.
Biomed Opt Express. 2019 Jan 24;10(2):868-878. doi: 10.1364/BOE.10.000868. eCollection 2019 Feb 1.
4
A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity.
Laser Phys Lett. 2013;10(7). doi: 10.1088/1612-2011/10/7/075605. Epub 2013 May 20.
5
Practical Challenges of Current Video Rate OCT Elastography: Accounting for Dynamic and Static Tissue Properties.
J Lasers Opt Photonics. 2014 Dec;1(2). doi: 10.4172/2469-410X.1000112. Epub 2014 Dec 12.
6
Optical coherence elastography in ophthalmology.
J Biomed Opt. 2017 Dec;22(12):1-28. doi: 10.1117/1.JBO.22.12.121720.
7
Review of optical coherence tomography in oncology.
J Biomed Opt. 2017 Dec;22(12):1-23. doi: 10.1117/1.JBO.22.12.121711.
8
Optical coherence elastography - OCT at work in tissue biomechanics [Invited].
Biomed Opt Express. 2017 Jan 27;8(2):1172-1202. doi: 10.1364/BOE.8.001172. eCollection 2017 Feb 1.
9
coherence microscopy [Invited].
Biomed Opt Express. 2017 Jan 6;8(2):622-639. doi: 10.1364/BOE.8.000622. eCollection 2017 Feb 1.
10
Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement.
Biomed Opt Express. 2015 May 5;6(6):1954-62. doi: 10.1364/BOE.6.001954. eCollection 2015 Jun 1.

本文引用的文献

1
Material properties from acoustic radiation force step response.
J Acoust Soc Am. 2009 May;125(5):2928-36. doi: 10.1121/1.3106129.
2
OCT elastography: imaging microscopic deformation and strain of tissue.
Opt Express. 1998 Sep 14;3(6):199-211. doi: 10.1364/oe.3.000199.
4
Optical micro-scale mapping of dynamic biomechanical tissue properties.
Opt Express. 2008 Jul 21;16(15):11052-65. doi: 10.1364/oe.16.011052.
5
In vivo visualization of abdominal malignancies with acoustic radiation force elastography.
Phys Med Biol. 2008 Jan 7;53(1):279-93. doi: 10.1088/0031-9155/53/1/020. Epub 2007 Dec 19.
6
Optical coherence elastography of engineered and developing tissue.
Tissue Eng. 2006 Jan;12(1):63-73. doi: 10.1089/ten.2006.12.63.
8
Cell tension, matrix mechanics, and cancer development.
Cancer Cell. 2005 Sep;8(3):175-6. doi: 10.1016/j.ccr.2005.08.009.
10
Determination of elastic moduli of thin layers of soft material using the atomic force microscope.
Biophys J. 2002 May;82(5):2798-810. doi: 10.1016/S0006-3495(02)75620-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验