Suppr超能文献

基于支持向量机的口腔黏膜下纤维性变黏膜下层结缔组织中细胞的自动分类。

Automated classification of cells in sub-epithelial connective tissue of oral sub-mucous fibrosis-an SVM based approach.

机构信息

I.I.T, Kharagpur, India.

出版信息

Comput Biol Med. 2009 Dec;39(12):1096-104. doi: 10.1016/j.compbiomed.2009.09.004. Epub 2009 Oct 23.

Abstract

Quantitative evaluation of histopathological features is not only vital for precise characterization of any precancerous condition but also crucial in developing automated computer aided diagnostic system. In this study segmentation and classification of sub-epithelial connective tissue (SECT) cells except endothelial cells in oral mucosa of normal and OSF conditions has been reported. Segmentation has been carried out using multi-level thresholding and subsequently the cell population has been classified using support vector machine (SVM) based classifier. Moreover, the geometric features used here have been observed to be statistically significant, which enhance the statistical learning potential and classification accuracy of the classifier. Automated classification of SECT cells characterizes this precancerous condition very precisely in a quantitative manner and unveils the opportunity to understand OSF related changes in cell population having definite geometric properties. The paper presents an automated classification method for understanding the deviation of normal structural profile of oral mucosa during precancerous changes.

摘要

对组织病理学特征进行定量评估不仅对准确描述任何癌前状态至关重要,而且对开发自动化计算机辅助诊断系统也至关重要。在这项研究中,报告了正常和 OSF 条件下口腔黏膜上皮下结缔组织(SECT)细胞(内皮细胞除外)的分割和分类。分割是使用多级阈值进行的,然后使用基于支持向量机(SVM)的分类器对细胞群体进行分类。此外,这里使用的几何特征被观察到具有统计学意义,这增强了分类器的统计学习潜力和分类准确性。SECT 细胞的自动分类以定量方式非常精确地描述了这种癌前状态,并揭示了理解具有明确几何特性的细胞群体中与 OSF 相关的变化的机会。本文提出了一种自动分类方法,用于了解口腔黏膜正常结构在癌前变化过程中的偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验