Suppr超能文献

基于纹理的口腔组织学图像上皮层分割。

Texture based segmentation of epithelial layer from oral histological images.

机构信息

School of Medical Science and Technology, IIT Kharagpur, West Bengal 721302, India.

出版信息

Micron. 2011 Aug;42(6):632-41. doi: 10.1016/j.micron.2011.03.003. Epub 2011 Mar 23.

Abstract

The objective of this paper is to provide a texture based segmentation algorithm for better delineation of the epithelial layer from histological images in discriminating normal and oral sub-mucous fibrosis (OSF). As per literature and oral clinicians, it is established that the OSF initially originates and propagates in the epithelial layer. So, more accurate segmentation of this layer is extremely important for a clinician to make a diagnostic decision. In doing this, Gabor based texture gradient is computed in gray scale images, followed by preprocessing of the microscopic images of oral histological sections. On the other hand, the color gradients of these images are obtained in the transformed Lab color space. Finally, the watershed segmentation is extended to segment the layer based on the combination of texture and color gradients. The segmented images are compared with the ground truth images provided by the oral experts. The segmentation results depict the superiority of the texture based segmentation in comparison to the Otsu's based segmentation in terms of misclassification error. Results are shown and discussed.

摘要

本文的目的是提供一种基于纹理的分割算法,以便更好地区分正常和口腔黏膜下纤维性变(OSF)组织学图像中的上皮层。根据文献和口腔临床医生的研究,OSF 最初起源并在上皮层中传播。因此,更准确地分割该层对于临床医生做出诊断决策非常重要。为此,在灰度图像中计算基于 Gabor 的纹理梯度,然后对口腔组织学切片的微观图像进行预处理。另一方面,这些图像的颜色梯度在转换后的 Lab 颜色空间中获得。最后,将分水岭分割扩展到基于纹理和颜色梯度的组合来分割该层。将分割后的图像与口腔专家提供的真实图像进行比较。分割结果表明,与基于 Otsu 的分割相比,基于纹理的分割在误分类错误方面具有优越性。结果进行了展示和讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验