Suppr超能文献

基于模型的方法调整后的乳腺 DCE-MRI 的主成分分析。

Principal component analysis of breast DCE-MRI adjusted with a model-based method.

机构信息

Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

出版信息

J Magn Reson Imaging. 2009 Nov;30(5):989-98. doi: 10.1002/jmri.21950.

Abstract

PURPOSE

To investigate a fast, objective, and standardized method for analyzing breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) applying principal component analysis (PCA) adjusted with a model-based method.

MATERIALS AND METHODS

3D gradient-echo DCE breast images of 31 malignant and 38 benign lesions, recorded on a 1.5T scanner, were retrospectively analyzed by PCA and by the model-based three-timepoints (3TP) method.

RESULTS

Intensity-scaled (IS) and enhancement-scaled (ES) datasets were reduced by PCA yielding a first IS-eigenvector that captured the signal variation between fat and fibroglandular tissue; two IS-eigenvectors and the two first ES-eigenvectors captured contrast-enhanced changes, whereas the remaining eigenvectors captured predominantly noise changes. Rotation of the two contrast-related eigenvectors led to a high congruence between the projection coefficients and the 3TP parameters. The ES-eigenvectors and the rotation angle were highly reproducible across malignant lesions, enabling calculation of a general rotated eigenvector base. Receiver operating characteristic (ROC) curve analysis of the projection coefficients of the two eigenvectors indicated high sensitivity of the first rotated eigenvector to detect lesions (area under the curve [AUC] > 0.97) and of the second rotated eigenvector to differentiate malignancy from benignancy (AUC = 0.87).

CONCLUSION

PCA adjusted with a model-based method provided a fast and objective computer-aided diagnostic tool for breast DCE-MRI.

摘要

目的

研究一种快速、客观、标准化的方法,应用基于模型的方法调整主成分分析(PCA)来分析乳腺动态对比增强磁共振成像(DCE-MRI)。

材料与方法

对 1.5T 扫描仪上记录的 31 例恶性和 38 例良性病变的 3D 梯度回波 DCE 乳腺图像进行回顾性分析,采用 PCA 和基于模型的三时点(3TP)方法进行分析。

结果

强度标度(IS)和增强标度(ES)数据集通过 PCA 减少,得到第一个捕获脂肪和纤维腺体组织之间信号变化的 IS 特征向量;两个 IS 特征向量和前两个 ES 特征向量捕获对比增强变化,而其余特征向量主要捕获噪声变化。两个与对比相关的特征向量的旋转导致投影系数与 3TP 参数之间具有高度一致性。恶性病变之间 ES 特征向量和旋转角度具有高度可重复性,从而能够计算一般旋转特征向量基。两个特征向量的投影系数的受试者工作特征(ROC)曲线分析表明,第一个旋转特征向量对检测病变具有很高的敏感性(曲线下面积[AUC]>0.97),第二个旋转特征向量对区分良恶性具有很高的特异性(AUC=0.87)。

结论

基于模型的方法调整的 PCA 为乳腺 DCE-MRI 提供了一种快速、客观的计算机辅助诊断工具。

相似文献

引用本文的文献

5
Perspectives: MRI of angiogenesis.观点:血管生成的 MRI 研究
J Magn Reson. 2018 Jul;292:99-105. doi: 10.1016/j.jmr.2018.04.008. Epub 2018 Apr 12.

本文引用的文献

3
Breast MRI: guidelines from the European Society of Breast Imaging.乳腺磁共振成像:欧洲乳腺影像学会指南
Eur Radiol. 2008 Jul;18(7):1307-18. doi: 10.1007/s00330-008-0863-7. Epub 2008 Apr 4.
6
Learning in linear neural networks: a survey.线性神经网络中的学习:一项综述。
IEEE Trans Neural Netw. 1995;6(4):837-58. doi: 10.1109/72.392248.
8
Diagnostic breast MR imaging: current status and future directions.乳腺磁共振成像诊断:现状与未来方向
Radiol Clin North Am. 2007 Sep;45(5):863-80, vii. doi: 10.1016/j.rcl.2007.07.002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验