Suppr超能文献

树突状结构域和神经元输出模式决定梨状皮质中特定通路的长时程增强。

Dendritic compartment and neuronal output mode determine pathway-specific long-term potentiation in the piriform cortex.

作者信息

Johenning Friedrich W, Beed Prateep S, Trimbuch Thorsten, Bendels Michael H K, Winterer Jochen, Schmitz Dietmar

机构信息

Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Germany.

出版信息

J Neurosci. 2009 Oct 28;29(43):13649-61. doi: 10.1523/JNEUROSCI.2672-09.2009.

Abstract

The apical dendrite of layer 2/3 pyramidal cells in the piriform cortex receives two spatially distinct inputs: one projecting onto the distal apical dendrite in sensory layer 1a, the other targeting the proximal apical dendrite in layer 1b. We observe an expression gradient of A-type K(+) channels that weakens the backpropagating action potential-mediated depolarization in layer 1a compared with layer 1b. We find that the pairing of presynaptic and postsynaptic firing leads to significantly smaller Ca(2+) signals in the distal dendritic spines in layer 1a compared with the proximal spines in layer 1b. The consequence is a selective failure to induce long-term potentiation (LTP) in layer 1a, which can be rescued by pharmacological enhancement of action potential backpropagation. In contrast, LTP induction by pairing presynaptic and postsynaptic firing is possible in layer 1b but requires bursting of the postsynaptic cell. This output mode strongly depends on the balance of excitation and inhibition in the piriform cortex. We show, on the single-spine level, how the plasticity of functionally distinct synapses is gated by the intrinsic electrical properties of piriform cortex layer 2 pyramidal cell dendrites and the cellular output mode.

摘要

梨状皮层2/3层锥体细胞的顶端树突接收两种空间上不同的输入:一种投射到感觉1a层的远端顶端树突上,另一种靶向1b层的近端顶端树突。我们观察到A 型钾通道的表达梯度,与1b层相比,它减弱了1a层中由动作电位回传介导的去极化。我们发现,与1b层的近端棘突相比,1a层远端树突棘中突触前和突触后放电的配对导致显著更小的钙离子信号。结果是1a层选择性地无法诱导长时程增强(LTP),这可以通过药理增强动作电位回传来挽救。相比之下,在1b层中通过突触前和突触后放电配对诱导LTP是可能的,但需要突触后细胞爆发式放电。这种输出模式强烈依赖于梨状皮层中兴奋和抑制的平衡。我们在单棘突水平上展示了梨状皮层2层锥体细胞树突的内在电特性和细胞输出模式如何控制功能不同的突触的可塑性。

相似文献

4
Non-associative potentiation of proximal excitatory inputs to layer 2/3 pyramidal cells in rat visual cortex.
Biochem Biophys Res Commun. 2024 Nov 12;733:150736. doi: 10.1016/j.bbrc.2024.150736. Epub 2024 Sep 21.
6
Dendritic spikes as a mechanism for cooperative long-term potentiation.
Nature. 2002 Jul 18;418(6895):326-31. doi: 10.1038/nature00854.
7
Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs.
J Neurosci. 2013 Jan 23;33(4):1314-25. doi: 10.1523/JNEUROSCI.3219-12.2013.
10
Spine Ca2+ signaling in spike-timing-dependent plasticity.
J Neurosci. 2006 Oct 25;26(43):11001-13. doi: 10.1523/JNEUROSCI.1749-06.2006.

引用本文的文献

1
Bilateral Alignment of Receptive Fields in the Olfactory Cortex.
eNeuro. 2024 Nov 6;11(11). doi: 10.1523/ENEURO.0155-24.2024. Print 2024 Nov.
2
Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity.
Front Neural Circuits. 2024 May 22;18:1423505. doi: 10.3389/fncir.2024.1423505. eCollection 2024.
3
Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle.
Front Neurosci. 2023 Aug 23;17:1247375. doi: 10.3389/fnins.2023.1247375. eCollection 2023.
4
Cortical interneurons: fit for function and fit to function? Evidence from development and evolution.
Front Neural Circuits. 2023 May 4;17:1172464. doi: 10.3389/fncir.2023.1172464. eCollection 2023.
5
Fast and slow feedforward inhibitory circuits for cortical odor processing.
Elife. 2022 Mar 17;11:e73406. doi: 10.7554/eLife.73406.
6
Disinhibitory Circuitry Gates Associative Synaptic Plasticity in Olfactory Cortex.
J Neurosci. 2022 Apr 6;42(14):2942-2950. doi: 10.1523/JNEUROSCI.1369-21.2021. Epub 2022 Feb 18.
8
Circuit-Specific Dendritic Development in the Piriform Cortex.
eNeuro. 2020 Jun 19;7(3). doi: 10.1523/ENEURO.0083-20.2020. Print 2020 May/Jun.
9
NMDA spikes mediate amplification of inputs in the rat piriform cortex.
Elife. 2018 Dec 21;7:e38446. doi: 10.7554/eLife.38446.
10
Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function.
Front Cell Neurosci. 2018 Apr 23;12:109. doi: 10.3389/fncel.2018.00109. eCollection 2018.

本文引用的文献

1
Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations.
Neuron. 2009 Jun 25;62(6):850-61. doi: 10.1016/j.neuron.2009.05.022.
2
Silent synapses and the emergence of a postsynaptic mechanism for LTP.
Nat Rev Neurosci. 2008 Nov;9(11):813-25. doi: 10.1038/nrn2501. Epub 2008 Oct 15.
3
Calcium signaling in dendrites and spines: practical and functional considerations.
Neuron. 2008 Sep 25;59(6):902-13. doi: 10.1016/j.neuron.2008.08.020.
4
GABAergic circuits control input-spike coupling in the piriform cortex.
J Neurosci. 2008 Aug 27;28(35):8851-9. doi: 10.1523/JNEUROSCI.2385-08.2008.
5
Dendritic excitability and synaptic plasticity.
Physiol Rev. 2008 Apr;88(2):769-840. doi: 10.1152/physrev.00016.2007.
6
Locally dynamic synaptic learning rules in pyramidal neuron dendrites.
Nature. 2007 Dec 20;450(7173):1195-200. doi: 10.1038/nature06416.
7
Dendritic properties of turtle pyramidal neurons.
J Neurophysiol. 2008 Feb;99(2):683-94. doi: 10.1152/jn.01076.2007. Epub 2007 Nov 28.
8
Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity.
Trends Neurosci. 2007 Sep;30(9):456-63. doi: 10.1016/j.tins.2007.06.010. Epub 2007 Aug 31.
9
Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons.
J Neurosci. 2007 Aug 22;27(34):8999-9008. doi: 10.1523/JNEUROSCI.1717-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验