Suppr超能文献

对DNA复制保真度的不断演变的观点。

Evolving views of DNA replication (in)fidelity.

作者信息

Kunkel T A

机构信息

Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2009;74:91-101. doi: 10.1101/sqb.2009.74.027. Epub 2009 Nov 10.

Abstract

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material" (Watson and Crick 1953). In the years since this remarkable understatement, we have come to realize the enormous complexity of the cellular machinery devoted to replicating DNA with the accuracy needed to maintain genetic information over many generations, balanced by the emergence of mutations on which selection can act. This complexity is partly based on the need to remove or tolerate cytotoxic and mutagenic lesions in DNA generated by environmental stress. Considered here is the fidelity with which undamaged and damaged DNA is replicated by the many DNA polymerases now known to exist. Some of these seriously violate Watson-Crick base-pairing rules such that, depending on the polymerase, the composition and location of the error, and the ability to correct errors (or not), DNA synthesis error rates can vary by more than a millionfold. This offers the potential to modulate rates of point mutations over a wide range, with consequences that can be either deleterious or beneficial.

摘要

“我们已经注意到,我们所假设的特定配对方式立即暗示了遗传物质可能的复制机制”(沃森和克里克,1953年)。自这句意义非凡的低调陈述发表后的数年里,我们逐渐意识到,致力于以维持多代遗传信息所需的准确性来复制DNA的细胞机制极其复杂,同时伴随着可供选择作用的突变的出现。这种复杂性部分源于需要去除或耐受环境压力在DNA中产生的细胞毒性和诱变损伤。本文探讨了目前已知的多种DNA聚合酶复制未受损和受损DNA时的保真度。其中一些聚合酶严重违反沃森-克里克碱基配对规则,因此,根据聚合酶、错误的组成和位置以及校正错误的能力(或无此能力),DNA合成错误率的变化可能超过一百万倍。这提供了在很宽范围内调节点突变率的潜力,其后果可能是有害的,也可能是有益的。

相似文献

1
Evolving views of DNA replication (in)fidelity.
Cold Spring Harb Symp Quant Biol. 2009;74:91-101. doi: 10.1101/sqb.2009.74.027. Epub 2009 Nov 10.
4
DNA replication fidelity and cancer.
Semin Cancer Biol. 2010 Oct;20(5):281-93. doi: 10.1016/j.semcancer.2010.10.009. Epub 2010 Oct 15.
5
How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
J Am Chem Soc. 2014 Apr 2;136(13):4927-37. doi: 10.1021/ja4102375. Epub 2014 Mar 21.
6
Translesion synthesis DNA polymerases and control of genome stability.
Front Biosci. 2006 Sep 1;11:2496-517. doi: 10.2741/1985.
7
Mutator phenotypes due to DNA replication infidelity.
Semin Cancer Biol. 2010 Oct;20(5):304-11. doi: 10.1016/j.semcancer.2010.10.003. Epub 2010 Oct 8.
8
Escherichia coli Y family DNA polymerases.
Front Biosci (Landmark Ed). 2011 Jun 1;16(8):3164-82. doi: 10.2741/3904.
9
Structural insights into the origins of DNA polymerase fidelity.
Structure. 2003 May;11(5):489-96. doi: 10.1016/s0969-2126(03)00051-0.
10
DNA Replication-A Matter of Fidelity.
Mol Cell. 2016 Jun 2;62(5):745-55. doi: 10.1016/j.molcel.2016.05.003.

引用本文的文献

3
Prognosis conferred by molecular features of appendix-derived Pseudomyxoma Peritonei.
Transl Oncol. 2025 Mar;53:102279. doi: 10.1016/j.tranon.2025.102279. Epub 2025 Feb 9.
5
Altered dNTP pools accelerate tumor formation in mice.
Nucleic Acids Res. 2024 Nov 11;52(20):12475-12486. doi: 10.1093/nar/gkae843.
6
The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions.
Cells. 2024 Sep 10;13(18):1512. doi: 10.3390/cells13181512.
7
Somatic CpG hypermutation is associated with mismatch repair deficiency in cancer.
Mol Syst Biol. 2024 Sep;20(9):1006-1024. doi: 10.1038/s44320-024-00054-5. Epub 2024 Jul 18.
10
Mismatch Repair Protein Msh6 Is Necessary for Nuclear Division and Gametogenesis in .
Int J Mol Sci. 2023 Dec 18;24(24):17619. doi: 10.3390/ijms242417619.

本文引用的文献

1
Low-fidelity DNA synthesis by the L979F mutator derivative of Saccharomyces cerevisiae DNA polymerase zeta.
Nucleic Acids Res. 2009 Jun;37(11):3774-87. doi: 10.1093/nar/gkp238. Epub 2009 Apr 20.
2
DNA damage tolerance: when it's OK to make mistakes.
Nat Chem Biol. 2009 Feb;5(2):82-90. doi: 10.1038/nchembio.139. Epub 2009 Jan 15.
3
Polymerase dynamics at the eukaryotic DNA replication fork.
J Biol Chem. 2009 Feb 13;284(7):4041-5. doi: 10.1074/jbc.R800062200. Epub 2008 Oct 3.
4
Dividing the workload at a eukaryotic replication fork.
Trends Cell Biol. 2008 Nov;18(11):521-7. doi: 10.1016/j.tcb.2008.08.005. Epub 2008 Sep 27.
5
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.
J Mol Biol. 2008 Oct 17;382(4):859-69. doi: 10.1016/j.jmb.2008.07.058. Epub 2008 Jul 27.
6
DNA polymerases and human disease.
Nat Rev Genet. 2008 Aug;9(8):594-604. doi: 10.1038/nrg2345.
7
Division of labor at the eukaryotic replication fork.
Mol Cell. 2008 Apr 25;30(2):137-44. doi: 10.1016/j.molcel.2008.02.022.
8
DNA mismatch repair: molecular mechanism, cancer, and ageing.
Mech Ageing Dev. 2008 Jul-Aug;129(7-8):391-407. doi: 10.1016/j.mad.2008.02.012. Epub 2008 Mar 4.
10
Send in the clamps: control of DNA translesion synthesis in eukaryotes.
Mol Cell. 2007 Nov 30;28(4):522-9. doi: 10.1016/j.molcel.2007.11.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验