Suppr超能文献

原卟啉IX荧光引导切除术中用于容积图像更新的脑变形估计

Estimation of brain deformation for volumetric image updating in protoporphyrin IX fluorescence-guided resection.

作者信息

Valdés Pablo A, Fan Xiaoyao, Ji Songbai, Harris Brent T, Paulsen Keith D, Roberts David W

机构信息

Dartmouth Medical School, Dartmouth College, Hanover, N.H., USA.

出版信息

Stereotact Funct Neurosurg. 2010;88(1):1-10. doi: 10.1159/000258143. Epub 2009 Nov 12.

Abstract

INTRODUCTION

Fluorescence-guided resection (FGR) of brain tumors is an intuitive, practical and emerging technology for visually delineating neoplastic tissue exposed intraoperatively. Image guidance is the standard technique for producing 3-dimensional spatially coregistered information for surgical decision making. Both technologies together are synergistic: the former detects surface fluorescence as a biomarker of the current surgical margin while the latter shows coregistered volumetric neuroanatomy but can be degraded by intraoperative brain shift. We present the implementation of deformation modeling for brain shift compensation in protoporphyrin IX FGR, integrating these two sources of information for maximum surgical benefit.

METHODS

Two patients underwent FGR coregistered with conventional image guidance. Histopathological analysis, intraoperative fluorescence and image space coordinates were recorded for biopsy specimens acquired during surgery. A biomechanical brain deformation model driven by intraoperative ultrasound data was used to generate updated MR images.

RESULTS

Combined use of fluorescence signatures and updated MR image information showed substantially improved accuracy compared to fluorescence or the original (i.e., nonupdated) MR images, detecting only true positives and true negatives, and no instances of false positives or false negatives.

CONCLUSION

Implementation of brain deformation modeling in FGR shows promise for increasing the accuracy of neurosurgical guidance in the delineation and resection of brain tumors.

摘要

引言

脑肿瘤的荧光引导切除术(FGR)是一种直观、实用且新兴的技术,用于在术中直观地勾勒出暴露的肿瘤组织。图像引导是生成用于手术决策的三维空间配准信息的标准技术。这两种技术协同作用:前者检测表面荧光作为当前手术切缘的生物标志物,而后者显示配准的体积神经解剖结构,但可能会因术中脑移位而退化。我们展示了在原卟啉IX FGR中用于脑移位补偿的变形建模的实施,整合这两种信息来源以实现最大手术益处。

方法

两名患者接受了与传统图像引导配准的FGR。记录手术期间获取的活检标本的组织病理学分析、术中荧光和图像空间坐标。使用由术中超声数据驱动的生物力学脑变形模型生成更新的磁共振图像。

结果

与单独使用荧光或原始(即未更新的)磁共振图像相比,荧光特征和更新的磁共振图像信息的联合使用显示准确性显著提高,仅检测到真阳性和真阴性,未出现假阳性或假阴性情况。

结论

在FGR中实施脑变形建模有望提高脑肿瘤勾勒和切除术中神经外科手术引导的准确性。

相似文献

4
Image Updating for Brain Shift Compensation During Resection.脑移位补偿术中的图像更新。
Oper Neurosurg (Hagerstown). 2018 Apr 1;14(4):402-411. doi: 10.1093/ons/opx123.
5
Intraoperative image updating for brain shift following dural opening.硬脑膜打开后脑移位的术中图像更新。
J Neurosurg. 2017 Jun;126(6):1924-1933. doi: 10.3171/2016.6.JNS152953. Epub 2016 Sep 9.

引用本文的文献

7
Standard clinical approaches and emerging modalities for glioblastoma imaging.胶质母细胞瘤成像的标准临床方法和新兴模式
Neurooncol Adv. 2022 May 26;4(1):vdac080. doi: 10.1093/noajnl/vdac080. eCollection 2022 Jan-Dec.

本文引用的文献

9
The 2007 WHO classification of tumours of the central nervous system.2007年世界卫生组织中枢神经系统肿瘤分类
Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验