Suppr超能文献

计算鉴定蛋白质中的慢构象波动。

Computational identification of slow conformational fluctuations in proteins.

机构信息

Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Phys Chem B. 2009 Dec 31;113(52):16669-80. doi: 10.1021/jp9077213.

Abstract

Conformational flexibility of proteins has been linked to their designated functions. Slow conformational fluctuations occurring at the microsecond to millisecond time scale, in particular, have recently attracted considerable interest in connection to the mechanism of enzyme catalysis. Computational methods are providing valuable insights into the connection between protein structure, flexibility, and function. In this report, we present studies on identification and characterization of microsecond flexibility of ubiquitin, based on quasi-harmonic analysis (QHA) and normal-mode analysis (NMA). The results indicate that the slowest 10 QHA modes, computed from the 0.5 mus molecular dynamics ensemble, contribute over 78% of all motions. The identified slow movements show over 75% similarity with the conformational fluctuations observed in nuclear magnetic resonance ensemble and also agree with displacements in the set of X-ray structures. The slowest modes show high flexibility in the beta1-beta2, alpha1-beta3, and beta3-beta4 loop regions, with functional implications in the mechanism of binding other proteins. NMA of ubiquitin structures was not able to reproduce the long time scale fluctuations, as they were found to strongly depend on the reference structures. Further, conformational fluctuations coupled to the cis/trans isomerization reaction catalyzed by the enzyme cyclophilin A (CypA), occurring at the microsecond to millisecond time scale, have also been identified and characterized on the basis of QHA of conformations sampled along the reaction pathway. The results indicate that QHA covers the same conformational landscape as the experimentally observed CypA flexibility. Overall, the identified slow conformational fluctuations in ubiquitin and CypA indicate that the intrinsic flexibility of these proteins is closely linked to their designated functions.

摘要

蛋白质的构象灵活性与其指定的功能有关。特别是,在微秒到毫秒时间尺度上发生的缓慢构象波动,最近在与酶催化机制相关的研究中引起了相当大的关注。计算方法为研究蛋白质结构、灵活性和功能之间的关系提供了有价值的见解。在本报告中,我们基于准谐分析(QHA)和正则模态分析(NMA),对泛素的微秒级灵活性的识别和特征进行了研究。结果表明,从 0.5 微秒的分子动力学集合中计算得出的最慢 10 个 QHA 模式,贡献了所有运动的 78%以上。所确定的缓慢运动与在核磁共振集合中观察到的构象波动以及在一组 X 射线结构中的位移具有超过 75%的相似性。最慢的模式在 beta1-beta2、alpha1-beta3 和 beta3-beta4 环区域表现出高度的灵活性,这在与其他蛋白质结合的机制中具有功能意义。NMA 对泛素结构的分析无法再现长时间尺度的波动,因为它们被发现强烈依赖于参考结构。此外,还基于沿反应途径采样的构象的 QHA,对由酶亲环蛋白 A(CypA)催化的顺/反异构化反应的微秒到毫秒时间尺度上的构象波动进行了识别和特征分析。结果表明,QHA 涵盖了与实验观察到的 CypA 灵活性相同的构象景观。总的来说,在泛素和 CypA 中识别出的缓慢构象波动表明,这些蛋白质的固有灵活性与其指定的功能密切相关。

相似文献

1
Computational identification of slow conformational fluctuations in proteins.
J Phys Chem B. 2009 Dec 31;113(52):16669-80. doi: 10.1021/jp9077213.
2
Conformational Sub-states and Populations in Enzyme Catalysis.
Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9.
3
Protein conformational populations and functionally relevant substates.
Acc Chem Res. 2014 Jan 21;47(1):149-56. doi: 10.1021/ar400084s. Epub 2013 Aug 29.
4
Discovering conformational sub-states relevant to protein function.
PLoS One. 2011 Jan 28;6(1):e15827. doi: 10.1371/journal.pone.0015827.
5
The Molecular Basis of the Interaction of Cyclophilin A with α-Synuclein.
Angew Chem Int Ed Engl. 2020 Mar 27;59(14):5643-5646. doi: 10.1002/anie.201914878. Epub 2020 Jan 29.
6
Enzyme dynamics during catalysis.
Science. 2002 Feb 22;295(5559):1520-3. doi: 10.1126/science.1066176.
7
Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.
J Chem Inf Model. 2013 Feb 25;53(2):403-10. doi: 10.1021/ci300432w. Epub 2013 Jan 28.
8
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.
10
Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A.
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5247-52. doi: 10.1073/pnas.082100499. Epub 2002 Apr 2.

引用本文的文献

1
2
Epitopes recognition of SARS-CoV-2 nucleocapsid RNA binding domain by human monoclonal antibodies.
iScience. 2024 Jan 19;27(2):108976. doi: 10.1016/j.isci.2024.108976. eCollection 2024 Feb 16.
3
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase.
Chem Sci. 2022 Nov 2;13(45):13303-13320. doi: 10.1039/d2sc05031e. eCollection 2022 Nov 23.
4
Editing Domain Motions Preorganize the Synthetic Active Site of Prolyl-tRNA Synthetase.
ACS Catal. 2020 Sep 4;10(17):10229-10242. doi: 10.1021/acscatal.0c02381. Epub 2020 Aug 14.
5
Enzyme dynamics: Looking beyond a single structure.
ChemCatChem. 2020 Oct 6;12(19):4704-4720. doi: 10.1002/cctc.202000665. Epub 2020 Jun 26.
6
Visualizing Rev1 catalyze protein-template DNA synthesis.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25494-25504. doi: 10.1073/pnas.2010484117. Epub 2020 Sep 30.
8
AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop.
Nucleic Acids Res. 2020 Jul 27;48(13):7345-7355. doi: 10.1093/nar/gkaa496.
9
Electrostatic Switching Controls Channel Dynamics of the Sensor Protein VirB10 in Type IV Secretion System.
ACS Omega. 2020 Feb 4;5(7):3271-3281. doi: 10.1021/acsomega.9b03313. eCollection 2020 Feb 25.
10
Insights into Structural and Dynamical Changes Experienced by Human RNase 6 upon Ligand Binding.
Biochemistry. 2020 Feb 18;59(6):755-765. doi: 10.1021/acs.biochem.9b00888. Epub 2020 Jan 24.

本文引用的文献

1
An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling.
Chem Phys Lett. 2009 Mar 26;471(4-6):179-193. doi: 10.1016/j.cplett.2009.01.038.
2
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science. 2008 Jun 13;320(5882):1471-5. doi: 10.1126/science.1157092.
3
Free-energy landscape of enzyme catalysis.
Biochemistry. 2008 Mar 18;47(11):3317-21. doi: 10.1021/bi800049z. Epub 2008 Feb 26.
4
A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.
Nature. 2007 Dec 6;450(7171):913-6. doi: 10.1038/nature06407. Epub 2007 Nov 18.
5
Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor.
Biophys J. 2007 Oct 15;93(8):2622-34. doi: 10.1529/biophysj.107.109843. Epub 2007 Jun 15.
7
Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18493-8. doi: 10.1073/pnas.0604977103. Epub 2006 Nov 27.
8
Interpreting correlated motions using normal mode analysis.
Structure. 2006 Nov;14(11):1647-53. doi: 10.1016/j.str.2006.09.003.
9
10
Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15753-8. doi: 10.1073/pnas.0606976103. Epub 2006 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验