Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
PLoS One. 2011 Jan 28;6(1):e15827. doi: 10.1371/journal.pone.0015827.
Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization.
To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function.
Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function.
内部运动使蛋白质能够探索一系列构象,即使在天然状态附近也是如此。构象波动在蛋白质指定功能中的作用仍存在广泛争议。新出现的证据表明,构象范围内的亚组(或亚态)包含可能具有功能相关性的属性。然而,这些亚态中的低群体和构象之间的瞬态转换性质对它们的识别和特征描述提出了重大挑战。
为了克服这些挑战,我们开发了一种新的计算技术,准非谐分析(QAA)。QAA 利用蛋白质运动的高阶统计数据来识别构象景观中的亚态。此外,对非谐性的关注允许识别能够在亚态之间进行转换的构象波动。应用于人类泛素和 T4 溶菌酶平衡模拟的 QAA 揭示了与分子识别相关的功能相关的亚态和蛋白质运动。与反应途径采样方法相结合,QAA 描述了与酶 cyclophilin A 催化的顺式/反式肽基脯氨酰异构化相关的构象亚态。在这三种蛋白质中,QAA 允许识别构象亚态,这些亚态具有与蛋白质功能相关的关键结构和动力学特征。
总体而言,QAA 提供了一个直观理解构象多样性的生物物理基础及其与蛋白质功能相关性的新框架。