Suppr超能文献

使用基函数研究组水平的血流动力学响应变异性。

Investigating hemodynamic response variability at the group level using basis functions.

机构信息

Cognitive Neuroscience Division of the Taub Institute, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.

出版信息

Neuroimage. 2010 Feb 1;49(3):2113-22. doi: 10.1016/j.neuroimage.2009.11.014. Epub 2009 Nov 12.

Abstract

Introduced is a general framework for performing group-level analyses of fMRI data using any basis set of two functions (i.e., the canonical hemodynamic response function and its first derivative) to model the hemodynamic response to neural activity. The approach allows for flexible implementation of physiologically based restrictions on the results. Information from both basis functions is used at the group level and the limitations avoid physiologically ambiguous or implausible results. This allows for investigation of specific BOLD activity such as hemodynamic responses peaking within a specified temporal range (i.e., 4-5 s). The general nature of the presented approach allows for applications using basis sets specifically designed to investigate various physiologic phenomena, i.e., age-related variability in poststimulus undershoot, hemodynamic responses measured with cerebral blood flow imaging, or subject-specific basis sets. An example using data from a group of healthy young participants demonstrates the methods and the specific steps to study poststimulus variability are discussed. The approach is completely implemented within the general linear model and requires minimal programmatic calculations.

摘要

介绍了一种使用任何两个函数(即典型的血流动力学响应函数及其一阶导数)基组来对神经活动的血流动力学响应进行建模,从而对 fMRI 数据进行组水平分析的通用框架。该方法允许对结果实施灵活的生理限制。在组水平上使用来自两个基函数的信息,并避免出现生理上模棱两可或不合理的结果。这允许研究特定的 BOLD 活动,例如在特定时间范围内达到峰值的血流动力学响应(即 4-5 秒)。所提出的方法的通用性允许使用专门设计用于研究各种生理现象的基组进行应用,例如,刺激后下冲的与年龄相关的可变性、使用脑血流成像测量的血流动力学响应,或特定于主体的基组。使用一组健康年轻参与者的数据的示例演示了该方法,并讨论了研究刺激后变异性的具体步骤。该方法完全在广义线性模型内实现,并且仅需要最小的编程计算。

相似文献

引用本文的文献

5
Reconstruction of time-shifted hemodynamic response.时移血流动力学响应的重建。
Sci Rep. 2022 Oct 19;12(1):17441. doi: 10.1038/s41598-022-17601-5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验