AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, 91190 Gif-sur-Yvette, France.
Theor Appl Genet. 2010 Jan;120(2):463-73. doi: 10.1007/s00122-009-1203-2. Epub 2009 Nov 15.
The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype-phenotype relationship. From the generalization of Kacser and Burns' biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we "crossed" virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype-phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis.
杂种优势的遗传和分子方法通常不依赖于基因型-表型关系的任何模型。从 Kacser 和 Burns 的用于优势和上位性的生化模型推广到具有多个可变酶的网络,我们假设可以观察到代谢杂种优势,因为通量对酶活性和/或浓度的响应遵循多维双曲线关系。为了证实这一点,我们使用了系统参数的值,这些值说明了糖酵解上游部分的四个酶的动力学行为,并通过在计算机上改变酶浓度来模拟遗传变异性。然后,我们“杂交”虚拟亲本以获得 1000 个杂种,并表明经常观察到最佳亲本杂种优势。借助新的多基因座上位性指数,将通量值分解为遗传效应,表明拮抗加性-加性上位性效应在这种基因型-表型关系框架中起主要作用。该结果与数量遗传学和进化遗传学中的各种观察结果一致,并提供了一个统一杂种优势遗传效应的模型。