Suppr超能文献

海马神经元内在兴奋性的稳态:对慢性去极化反应的动力学和机制。

Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization.

机构信息

Doctoral Training Centre for Neuroinformatics and Computational Neuroscience, School of Informatics, University of Edinburgh, Edinburgh EH8 9XD, UK.

出版信息

J Physiol. 2010 Jan 1;588(Pt 1):157-70. doi: 10.1113/jphysiol.2009.181024. Epub 2009 Nov 16.

Abstract

In order to maintain stable functionality in the face of continually changing input, neurones in the CNS must dynamically modulate their electrical characteristics. It has been hypothesized that in order to retain stable network function, neurones possess homeostatic mechanisms which integrate activity levels and alter network and cellular properties in such a way as to counter long-term perturbations. Here we describe a simple model system where we investigate the effects of sustained neuronal depolarization, lasting up to several days, by exposing cultures of primary hippocampal pyramidal neurones to elevated concentrations (10-30 mm) of KCl. Following exposure to KCl, neurones exhibit lower input resistances and resting potentials, and require more current to be injected to evoke action potentials. This results in a rightward shift in the frequency-input current (FI) curve which is explained by a simple linear model of the subthreshold I-V relationship. No changes are observed in action potential profiles, nor in the membrane potential at which action potentials are evoked. Furthermore, following depolarization, an increase in subthreshold potassium conductance is observed which is accounted for within a biophysical model of the subthreshold I-V characteristics of neuronal membranes. The FI curve shift was blocked by the presence of the L-type Ca(2+) channel blocker nifedipine, whilst antagonism of NMDA receptors did not interfere with the effect. Finally, changes in the intrinsic properties of neurones are reversible following removal of the depolarizing stimulus. We suggest that this experimental system provides a convenient model of homeostatic regulation of intrinsic excitability, and permits the study of temporal characteristics of homeostasis and its dependence on stimulus magnitude.

摘要

为了在面对持续变化的输入时保持稳定的功能,中枢神经系统中的神经元必须动态调节其电特性。有人假设,为了保持稳定的网络功能,神经元具有自动调节机制,这些机制整合活动水平,并以改变网络和细胞特性的方式来抵消长期的干扰。在这里,我们描述了一个简单的模型系统,通过将原代海马锥体神经元培养物暴露于升高的 KCl 浓度(10-30 mM)来研究持续神经元去极化的影响,持续时间长达数天。暴露于 KCl 后,神经元表现出较低的输入电阻和静息电位,并且需要更多的电流注入才能引发动作电位。这导致频率-输入电流(FI)曲线向右移动,这可以用亚阈值 I-V 关系的简单线性模型来解释。动作电位轮廓或引发动作电位的膜电位没有观察到变化。此外,在去极化后,观察到亚阈值钾电导增加,这在神经元膜亚阈值 I-V 特性的生物物理模型中得到了说明。FI 曲线的移动被 L 型钙(Ca2+)通道阻滞剂硝苯地平的存在所阻断,而 NMDA 受体的拮抗作用并不干扰这种效应。最后,神经元内在特性的变化在去极化刺激去除后是可逆的。我们认为,这个实验系统提供了一个方便的内源性兴奋性自动调节的模型,并允许研究自动调节的时间特性及其对刺激幅度的依赖性。

相似文献

引用本文的文献

6
Biological complexity facilitates tuning of the neuronal parameter space.生物复杂性促进了神经元参数空间的调整。
PLoS Comput Biol. 2023 Jul 3;19(7):e1011212. doi: 10.1371/journal.pcbi.1011212. eCollection 2023 Jul.

本文引用的文献

9
CREB modulates excitability of nucleus accumbens neurons.CREB调节伏隔核神经元的兴奋性。
Nat Neurosci. 2006 Apr;9(4):475-7. doi: 10.1038/nn1661. Epub 2006 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验