Suppr超能文献

基于互联网的干预措施中的依从性。

Adherence in Internet-based interventions.

作者信息

Wangberg Silje C, Bergmo Trine S, Johnsen Jan-Are K

机构信息

Norwegian Centre for Telemedicine, University Hospital of North Norway, Tromsø, Norway.

出版信息

Patient Prefer Adherence. 2008 Feb 2;2:57-65.

Abstract

BACKGROUND

The Internet is a promising channel for delivering health-promoting interventions. A common problem for Internet-based interventions is low adherence. The current paper reports adherence rates from three different Internet-based trials with potential covariates.

METHODS

Data on adherence and baseline characteristics of users were collected from three different Internet-based trials: one supporting diabetes self-management, one supporting smoking cessation, and one offering an online personal health record. Logging of web use was used as the measure of adherence in two of the trials, while logging of authentication SMS messages was used in the third.

RESULTS

In all three trials, users dropped out at a high rate early in the intervention. The baseline variables that were related to use were self-efficacy, having smoking friends, age, gender, and education. Tailored emails increased use for up to five months into a one-year intervention.

CONCLUSION

Dropout from Internet-based trials is substantial, and attrition curves can be a valuable tool for more accurate pretrial estimates of sample size power. Automated follow-up of users via email seems likely to increase adherence and should be included in Internet-based interventions. Tailoring on baseline covariates to adherence such as self-efficacy could make them even more effective.

摘要

背景

互联网是提供健康促进干预措施的一个有前景的渠道。基于互联网的干预措施的一个常见问题是依从性低。本文报告了三项不同的基于互联网的试验的依从率及潜在协变量。

方法

从三项不同的基于互联网的试验中收集了用户的依从性和基线特征数据:一项支持糖尿病自我管理,一项支持戒烟,一项提供在线个人健康记录。在两项试验中,网络使用记录被用作依从性的衡量指标,而在第三项试验中,认证短信的记录被用作依从性的衡量指标。

结果

在所有三项试验中,用户在干预早期就有很高的退出率。与使用相关的基线变量包括自我效能感、有吸烟的朋友、年龄、性别和教育程度。在为期一年的干预中,量身定制的电子邮件在长达五个月的时间里增加了使用量。

结论

基于互联网的试验中的退出情况很严重,损耗曲线可能是更准确地在试验前估计样本量效能的一个有价值的工具。通过电子邮件对用户进行自动跟进似乎有可能提高依从性,应将其纳入基于互联网的干预措施中。根据自我效能感等与依从性相关的基线协变量进行量身定制可能会使这些干预措施更加有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d5/2770402/b36938821e2a/ppa-2-57f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验