Suppr超能文献

人类大脑在导航过程中使用自我中心和以他人为中心参考框架时的动力学变化。

Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation.

机构信息

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093-0961, USA.

出版信息

J Cogn Neurosci. 2010 Dec;22(12):2836-49. doi: 10.1162/jocn.2009.21369.

Abstract

Maintaining spatial orientation while travelling requires integrating spatial information encountered from an egocentric viewpoint with accumulated information represented within egocentric and/or allocentric reference frames. Here, we report changes in high-density EEG activity during a virtual tunnel passage task in which subjects respond to a postnavigation homing challenge in distinctly different ways--either compatible with a continued experience of the virtual environment from a solely egocentric perspective or as if also maintaining their original entrance orientation, indicating use of a parallel allocentric reference frame. By spatially filtering the EEG data using independent component analysis, we found that these two equal subject subgroups exhibited differences in EEG power spectral modulation during tunnel passages in only a few cortical areas. During tunnel turns, stronger alpha blocking occurred only in or near right primary visual cortex of subjects whose homing responses were compatible with continued use of an egocentric reference frame. In contrast, approaching and during tunnel turns, subjects who responded in a way compatible with use of an allocentric reference frame exhibited stronger alpha blocking of occipito-temporal, bilateral inferior parietal, and retrosplenial cortical areas, all areas implicated by hemodynamic imaging and neuropsychological observation in construction and maintenance of an allocentric reference frame. We conclude that in these subjects, stronger activation of retrosplenial and related cortical areas during turns support a continuous translation of egocentrically experienced visual flow into an allocentric model of their virtual position and movement.

摘要

在旅行中保持空间方向感需要将从自我中心视角获得的空间信息与自我中心和/或以自我为中心的参考框架内表示的累积信息整合在一起。在这里,我们报告了在虚拟隧道通过任务中高密度 EEG 活动的变化,在该任务中,受试者以明显不同的方式对导航后归巢挑战做出反应——要么与仅从自我中心视角持续体验虚拟环境兼容,要么好像也保持他们原来的入口方向,表明使用并行的以自我为中心的参考框架。通过使用独立成分分析对 EEG 数据进行空间滤波,我们发现这两个相等的受试者亚组在隧道通过期间的 EEG 功率谱调制方面仅在几个皮质区域存在差异。在隧道转弯期间,只有在以自我为中心的参考框架继续使用的情况下,其归巢反应与之兼容的受试者的右侧初级视觉皮层中才会出现更强的 alpha 阻断。相比之下,在接近和隧道转弯期间,以与使用以自我为中心的参考框架兼容的方式做出反应的受试者表现出更强的枕颞叶、双侧下顶叶和后扣带回皮质区域的 alpha 阻断,所有这些区域都通过血流动力学成像和神经心理学观察在以自我为中心的参考框架的构建和维持中得到证实。我们的结论是,在这些受试者中,在转弯过程中后扣带回和相关皮质区域的更强激活支持将自我中心体验的视觉流连续转换为其虚拟位置和运动的以自我为中心的模型。

相似文献

1
Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation.
J Cogn Neurosci. 2010 Dec;22(12):2836-49. doi: 10.1162/jocn.2009.21369.
2
Alpha modulation in parietal and retrosplenial cortex correlates with navigation performance.
Psychophysiology. 2012 Jan;49(1):43-55. doi: 10.1111/j.1469-8986.2011.01270.x. Epub 2011 Aug 8.
4
EEG correlates of spatial orientation in the human retrosplenial complex.
Neuroimage. 2015 Oct 15;120:123-32. doi: 10.1016/j.neuroimage.2015.07.009. Epub 2015 Jul 9.
5
Brain Dynamics of Spatial Reference Frame Proclivity in Active Navigation.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1701-1710. doi: 10.1109/TNSRE.2021.3106174. Epub 2021 Aug 30.
6
Interactions between ego- and allocentric neuronal representations of space.
Neuroimage. 2006 May 15;31(1):320-31. doi: 10.1016/j.neuroimage.2005.12.028. Epub 2006 Feb 9.
7
Granger causal connectivity dissociates navigation networks that subserve allocentric and egocentric path integration.
Brain Res. 2018 Jan 15;1679:91-100. doi: 10.1016/j.brainres.2017.11.016. Epub 2017 Nov 21.
9
The neural basis of the egocentric and allocentric spatial frame of reference.
Brain Res. 2007 Mar 16;1137(1):92-103. doi: 10.1016/j.brainres.2006.12.044. Epub 2006 Dec 21.
10
Allocentric versus egocentric representation of remembered reach targets in human cortex.
J Neurosci. 2014 Sep 10;34(37):12515-26. doi: 10.1523/JNEUROSCI.1445-14.2014.

引用本文的文献

1
A general spatial transformation process? Assessing the neurophysiological evidence on the similarity of mental rotation and folding.
Neuroimage Rep. 2022 Mar 25;2(2):100092. doi: 10.1016/j.ynirp.2022.100092. eCollection 2022 Jun.
3
Reliable electrocortical dynamics of target-directed pass-kicks.
Cogn Neurodyn. 2024 Oct;18(5):2343-2357. doi: 10.1007/s11571-024-10094-0. Epub 2024 Mar 16.
4
Cortical Correlates of Visuospatial Switching Processes Between Egocentric and Allocentric Frames of Reference: A fNIRS Study.
Brain Topogr. 2024 Sep;37(5):712-730. doi: 10.1007/s10548-023-01032-0. Epub 2024 Feb 5.
6
Mobile cognition: imaging the human brain in the 'real world'.
Nat Rev Neurosci. 2023 Jun;24(6):347-362. doi: 10.1038/s41583-023-00692-y. Epub 2023 Apr 12.
7
Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:657-668. doi: 10.1109/TNSRE.2022.3229563. Epub 2023 Feb 2.
8
Virtual Reality for Spatial Navigation.
Curr Top Behav Neurosci. 2023;65:103-129. doi: 10.1007/7854_2022_403.
9
EEG analysis of the visual motion activated vection network in left- and right-handers.
Sci Rep. 2022 Nov 15;12(1):19566. doi: 10.1038/s41598-022-21824-x.

本文引用的文献

1
Eye-movements during navigation in a virtual tunnel.
Int J Neurosci. 2009;119(10):1755-78. doi: 10.1080/00207450903170361.
2
Neuroelectromagnetic forward modeling toolbox.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3991-4. doi: 10.1109/IEMBS.2008.4650084.
3
Navigating from hippocampus to parietal cortex.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14755-62. doi: 10.1073/pnas.0804216105. Epub 2008 Sep 23.
4
A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage. 2009 Feb 1;44(3):947-66. doi: 10.1016/j.neuroimage.2008.02.059. Epub 2008 Mar 18.
5
Straight after the turn: the role of the parietal lobes in egocentric space processing.
Neurocase. 2008;14(2):204-19. doi: 10.1080/13554790802108398.
6
Gray matter differences correlate with spontaneous strategies in a human virtual navigation task.
J Neurosci. 2007 Sep 19;27(38):10078-83. doi: 10.1523/JNEUROSCI.1763-07.2007.
8
Neural systems in the visual control of steering.
J Neurosci. 2007 Jul 25;27(30):8002-10. doi: 10.1523/JNEUROSCI.2130-07.2007.
9
Spontaneous navigational strategies and performance in the virtual town.
Hippocampus. 2007;17(8):595-9. doi: 10.1002/hipo.20303.
10
Remembering the past and imagining the future: a neural model of spatial memory and imagery.
Psychol Rev. 2007 Apr;114(2):340-75. doi: 10.1037/0033-295X.114.2.340.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验