Hilton Christopher, Raddatz Leonie, Gramann Klaus
Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, 10623, Germany.
Neuroimage Rep. 2022 Mar 25;2(2):100092. doi: 10.1016/j.ynirp.2022.100092. eCollection 2022 Jun.
Mental rotation and mental folding are established as archetypal mental spatial transformation tasks. Yet, it is uncertain as to whether these tasks rely on a general spatial transformation mechanism or on dedicated processes. We scrutinized benchmark mental spatial transformation findings for and against the concept of a shared mechanism in two EEG experiments, on mental rotation and folding respectively. We found the typical increase in reaction times with greater transformation difficulties for both tasks, however there was no relationship between participants' reaction time slope for each task. Analyses of event-related potentials revealed a negative going component 400-800 ms post stimulus onset which distinguished transformation from baseline in both tasks, but only differed between difficulty levels for mental rotation. We found that this component originated from two parietal sources. A central parietal source displayed negativity in this time period distinguishing only transformation from baseline conditions in mental rotation and folding. Additionally, a left parietal source showed the same pattern for mental folding as the central source, but rotation yielded greater negativity for higher difficulties. Time-frequency analyses revealed desynchronisation in broadband alpha power throughout mental rotation and folding trials in both parietal sources, commensurate with a cognitive load being placed on transformation and visuospatial systems. We discuss a possible functional explanation for the results in line with a general spatial transformation process, for which we argue the evidence is stronger than for distinct rotation and folding mechanisms.
心理旋转和心理折叠被确立为典型的心理空间转换任务。然而,这些任务是依赖于一般的空间转换机制还是专门的过程尚不确定。我们在两项脑电图实验中分别对心理旋转和心理折叠的基准心理空间转换结果进行了仔细研究,以验证共享机制这一概念的正误。我们发现,两项任务的反应时间均会随着转换难度的增加而出现典型的增长,然而,参与者在每项任务中的反应时间斜率之间并无关联。对事件相关电位的分析显示,刺激开始后400 - 800毫秒出现一个负向成分,该成分在两项任务中均可区分转换与基线状态,但仅在心理旋转任务中随难度水平有所不同。我们发现该成分源自两个顶叶区域。一个中央顶叶区域在此时间段内显示出负性,仅在心理旋转和折叠任务中区分转换与基线状态。此外,一个左侧顶叶区域在心理折叠任务中呈现出与中央区域相同的模式,但在心理旋转任务中,随着难度增加负性更强。时频分析显示,在整个心理旋转和折叠试验过程中,两个顶叶区域的宽带阿尔法功率均出现去同步化,这与转换和视觉空间系统所承受的认知负荷相符。我们根据一般空间转换过程对结果进行了可能的功能解释,我们认为支持这一解释的证据比支持不同的旋转和折叠机制的证据更充分。