Suppr超能文献

在哺乳动物细胞中,双极纺锤体的形成过程中微管动力学和滑动的相互作用。

Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells.

机构信息

Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

Curr Biol. 2009 Dec 29;19(24):2108-13. doi: 10.1016/j.cub.2009.10.056.

Abstract

Accurate chromosome segregation during mitosis relies on the organization of microtubules into a bipolar spindle. Kinesin-5 proteins play an evolutionarily conserved role in establishing spindle bipolarity [1, 2] and clinical trials are currently evaluating inhibitors of human kinesin-5 (i.e., Eg5) for chemotherapeutic potential. However, in mammalian somatic cells, Eg5 activity is dispensable for maintenance of bipolar spindles once they are formed [3, 4], suggesting distinct requirements for establishment versus maintenance of spindle bipolarity. By combining Eg5 inhibition with RNA interference of other spindle proteins, we show that mitotic cells deficient in MCAK fail to maintain spindle bipolarity in the absence of Eg5 activity. Collapse of bipolar spindles in MCAK-deficient cells is driven by pole-focusing activities and is independent of MCAK function at centromeres, implicating hyperstabilized non-kinetochore microtubules in spindle collapse. Conversely, destabilizing nonkinetochore microtubules in early mitosis reduces the reliance on Eg5 for establishment of spindle bipolarity and renders cells partially resistant to Eg5 inhibitors. Thus, the temporal requirement for microtubule sliding generated by Eg5 activity during bipolar spindle assembly in mammalian cells is regulated by changes in the dynamic behavior of microtubules during mitosis.

摘要

在有丝分裂过程中,准确的染色体分离依赖于微管组织成两极纺锤体。驱动蛋白-5 蛋白在建立纺锤体两极方面发挥着进化上保守的作用[1,2],目前正在进行临床试验评估人类驱动蛋白-5(即 Eg5)的抑制剂在化疗方面的潜力。然而,在哺乳动物体细胞中,一旦形成两极纺锤体,Eg5 的活性对于维持两极纺锤体就不再是必需的[3,4],这表明建立和维持纺锤体两极性的要求不同。通过结合 Eg5 抑制和其他纺锤体蛋白的 RNA 干扰,我们表明,在没有 Eg5 活性的情况下,缺乏 MCAK 的有丝分裂细胞无法维持纺锤体两极性。在 MCAK 缺陷细胞中,两极纺锤体的崩溃是由极聚焦活性驱动的,并且与 MCAK 在着丝粒处的功能无关,这表明超稳定的非动粒微管在纺锤体崩溃中起作用。相反,在早期有丝分裂中破坏非动粒微管,减少了对 Eg5 建立纺锤体两极性的依赖,并使细胞对 Eg5 抑制剂具有部分抗性。因此,在哺乳动物细胞中,Eg5 活性在两极纺锤体组装过程中产生的微管滑动的时间要求受到有丝分裂过程中微管动态行为变化的调节。

相似文献

1
Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells.
Curr Biol. 2009 Dec 29;19(24):2108-13. doi: 10.1016/j.cub.2009.10.056.
2
Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15338-43. doi: 10.1073/pnas.0902317106. Epub 2009 Aug 19.
3
Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation.
Chromosoma. 2017 Aug;126(4):473-486. doi: 10.1007/s00412-016-0607-4. Epub 2016 Jun 29.
5
The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK.
J Cell Biol. 2004 Aug 16;166(4):473-8. doi: 10.1083/jcb.200404012. Epub 2004 Aug 9.
7
Antiparallel microtubule bundling supports KIF15-driven mitotic spindle assembly.
Mol Biol Cell. 2024 Jun 1;35(6):ar84. doi: 10.1091/mbc.E24-01-0023. Epub 2024 Apr 10.
8
Kinetochore-microtubule stability governs the metaphase requirement for Eg5.
Mol Biol Cell. 2014 Jul 1;25(13):2051-60. doi: 10.1091/mbc.E14-03-0785. Epub 2014 May 7.
9
Modulated microtubule dynamics enable Hklp2/Kif15 to assemble bipolar spindles.
Cell Cycle. 2011 Oct 15;10(20):3533-44. doi: 10.4161/cc.10.20.17817.
10
The role of Hklp2 in the stabilization and maintenance of spindle bipolarity.
Curr Biol. 2009 Nov 3;19(20):1712-7. doi: 10.1016/j.cub.2009.09.019. Epub 2009 Oct 8.

引用本文的文献

1
Matrin3 regulates mitotic spindle dynamics by controlling alternative splicing of CDC14B.
Cell Rep. 2023 Mar 28;42(3):112260. doi: 10.1016/j.celrep.2023.112260. Epub 2023 Mar 15.
2
More than two populations of microtubules comprise the dynamic mitotic spindle.
J Cell Sci. 2022 Feb 1;135(3). doi: 10.1242/jcs.258745. Epub 2022 Feb 2.
4
Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence.
EMBO Rep. 2020 May 6;21(5):e49248. doi: 10.15252/embr.201949248. Epub 2020 Mar 5.
8
The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy.
Oncotarget. 2016 Aug 16;7(33):53712-53734. doi: 10.18632/oncotarget.10728.
9
Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation.
Chromosoma. 2017 Aug;126(4):473-486. doi: 10.1007/s00412-016-0607-4. Epub 2016 Jun 29.

本文引用的文献

1
Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15338-43. doi: 10.1073/pnas.0902317106. Epub 2009 Aug 19.
2
Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly.
J Cell Biol. 2009 Feb 9;184(3):365-72. doi: 10.1083/jcb.200809055.
3
MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics.
Mol Biol Cell. 2009 Mar;20(6):1639-51. doi: 10.1091/mbc.e08-09-0985. Epub 2009 Jan 21.
4
Genome stability is ensured by temporal control of kinetochore-microtubule dynamics.
Nat Cell Biol. 2009 Jan;11(1):27-35. doi: 10.1038/ncb1809. Epub 2008 Dec 7.
5
Astrin regulates Aurora-A localization.
Biochem Biophys Res Commun. 2008 May 30;370(2):213-9. doi: 10.1016/j.bbrc.2008.03.072. Epub 2008 Mar 24.
6
MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover.
J Cell Biol. 2007 Dec 3;179(5):869-79. doi: 10.1083/jcb.200707120. Epub 2007 Nov 26.
7
Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging.
Nat Cell Biol. 2007 Nov;9(11):1233-42. doi: 10.1038/ncb1643. Epub 2007 Oct 14.
8
Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity.
J Cell Biol. 2007 Jul 30;178(3):345-54. doi: 10.1083/jcb.200701163.
9
Kinesin-5 acts as a brake in anaphase spindle elongation.
Curr Biol. 2007 Jun 19;17(12):R453-4. doi: 10.1016/j.cub.2007.05.001.
10
Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans.
J Cell Biol. 2003 Nov 10;163(3):451-6. doi: 10.1083/jcb.200304035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验