Suppr超能文献

实验性自身免疫性脑脊髓炎中的轴突病变的起始和进展。

Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis.

机构信息

Institute for Pediatric Regenerative Medicine, University of California Davis School of Medicine, Sacramento, California 95817, USA.

出版信息

J Neurosci. 2009 Nov 25;29(47):14965-79. doi: 10.1523/JNEUROSCI.3794-09.2009.

Abstract

Axonal loss is the principal cause of chronic disability in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). In C57BL/6 mice with EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide 35-55, the first evidences of axonal damage in spinal cord were in acute subpial and perivascular foci of infiltrating neutrophils and lymphocytes and included intra-axonal accumulations of the endovesicular Toll-like receptor TLR8, and the inflammasome protein NAcht leucine-rich repeat protein 1 (NALP1). Later in the course of this illness, focal inflammatory infiltrates disappeared from the spinal cord, but there was persistent activation of spinal cord innate immunity and progressive, bilaterally symmetric loss of small-diameter corticospinal tract axons. These results support the hypothesis that both contact-dependent and paracrine interactions of systemic inflammatory cells with axons and an innate immune-mediated neurodegenerative process contribute to axonal loss in this multiple sclerosis model.

摘要

轴突损失是多发性硬化症和实验性自身免疫性脑脊髓炎(EAE)慢性残疾的主要原因。在髓鞘少突胶质糖蛋白肽 35-55 免疫诱导的 C57BL/6 小鼠 EAE 中,脊髓中轴突损伤的第一个证据是在浸润的中性粒细胞和淋巴细胞的急性软膜下和血管周围焦点中,包括轴内的内体 Toll 样受体 TLR8 以及炎性小体蛋白 NAcht 亮氨酸重复蛋白 1(NALP1)的积累。在这种疾病的后期,脊髓中的局灶性炎症浸润消失,但脊髓固有免疫持续激活,小直径皮质脊髓束轴突进行性、双侧对称丢失。这些结果支持以下假设:全身性炎症细胞与轴突的接触依赖性和旁分泌相互作用以及固有免疫介导的神经退行性过程都有助于该多发性硬化症模型中的轴突损失。

相似文献

1
Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis.
J Neurosci. 2009 Nov 25;29(47):14965-79. doi: 10.1523/JNEUROSCI.3794-09.2009.
2
Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice.
J Neurol Sci. 2007 Sep 15;260(1-2):23-32. doi: 10.1016/j.jns.2007.03.020. Epub 2007 May 9.
3
Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
Brain. 2012 Jun;135(Pt 6):1794-818. doi: 10.1093/brain/aws100. Epub 2012 Apr 28.
4
Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
PLoS One. 2015 Dec 11;10(12):e0144847. doi: 10.1371/journal.pone.0144847. eCollection 2015.
7
Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.
J Neuroinflammation. 2017 Mar 17;14(1):57. doi: 10.1186/s12974-017-0831-8.
9
Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis.
Brain Res. 2009 Aug 4;1283:177-85. doi: 10.1016/j.brainres.2009.04.057. Epub 2009 Jun 2.
10
Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis.
Exp Neurol. 2009 Nov;220(1):44-56. doi: 10.1016/j.expneurol.2009.07.010. Epub 2009 Jul 17.

引用本文的文献

2
SiglecF Expressing Neutrophils Exacerbate Th17-Mediated Autoimmune Neuroinflammation.
Immune Netw. 2025 Apr 14;25(3):e19. doi: 10.4110/in.2025.25.e19. eCollection 2025 Jun.
3
Neuroinflammation causes mitral cell dysfunction and olfactory impairment in a multiple sclerosis model.
J Neuroinflammation. 2025 Mar 8;22(1):71. doi: 10.1186/s12974-025-03388-5.
4
Neutrophils, NETs and multiple sclerosis: a mini review.
Front Immunol. 2025 Jan 28;16:1487814. doi: 10.3389/fimmu.2025.1487814. eCollection 2025.
7
Zebrafish as a Model for Multiple Sclerosis.
Biomedicines. 2024 Oct 16;12(10):2354. doi: 10.3390/biomedicines12102354.
8
CSF1R antagonism results in increased supraspinal infiltration in EAE.
J Neuroinflammation. 2024 Apr 20;21(1):103. doi: 10.1186/s12974-024-03063-1.
9
The novel HS-mimetic, Tet-29, regulates immune cell trafficking across barriers of the CNS during inflammation.
J Neuroinflammation. 2023 Nov 1;20(1):251. doi: 10.1186/s12974-023-02925-4.
10
Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration.
Front Mol Neurosci. 2023 Jun 28;16:1207007. doi: 10.3389/fnmol.2023.1207007. eCollection 2023.

本文引用的文献

1
The relation between inflammation and neurodegeneration in multiple sclerosis brains.
Brain. 2009 May;132(Pt 5):1175-89. doi: 10.1093/brain/awp070. Epub 2009 Mar 31.
2
The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease?
Ann Neurol. 2009 Mar;65(3):239-48. doi: 10.1002/ana.21640.
4
Mitochondrial changes within axons in multiple sclerosis.
Brain. 2009 May;132(Pt 5):1161-74. doi: 10.1093/brain/awp046. Epub 2009 Mar 17.
5
Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis.
Lancet Neurol. 2009 Mar;8(3):280-91. doi: 10.1016/S1474-4422(09)70043-2.
6
Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors.
Ann Neurol. 2009 Feb;65(2):151-9. doi: 10.1002/ana.21533.
7
Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors.
Ann Neurol. 2009 Feb;65(2):160-6. doi: 10.1002/ana.21539.
10
Immunoglobulins and complement in postmortem multiple sclerosis tissue.
Ann Neurol. 2009 Jan;65(1):32-46. doi: 10.1002/ana.21524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验