Yao Junjie, Wang Lihong V
Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
Laser Photon Rev. 2013 Sep 1;7(5). doi: 10.1002/lpor.201200060.
Photoacoustic microscopy (PAM) is a hybrid imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts . Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies.
光声显微镜(PAM)是一种混合成像技术,它通过光声效应以声学方式检测光学对比度。与纯光学显微镜技术不同,PAM利用了组织中较弱的声学散射,从而突破了光学扩散极限(软组织中约为1毫米)。凭借其出色的可扩展性,PAM可以在高达几毫米的所需最大成像深度处提供高分辨率图像。与基于背散射的共聚焦显微镜和光学相干断层扫描相比,PAM提供的是吸收对比度而非散射对比度。此外,与基于荧光的方法(如宽场、共聚焦和多光子显微镜)相比,PAM可以在更多内源性或外源性分子的吸收波长处成像。最重要的是,PAM可以同时对解剖、功能、分子、流动动力学和代谢对比度进行成像。本综述聚焦于PAM的最新发展,讨论了PAM实现方式的关键特性及其在生物医学研究中的应用。