Suppr超能文献

可逆磷酸化通过在失活正元件中创建一个开关来支持强大的生物钟节律。

Reversible phosphorylation subserves robust circadian rhythms by creating a switch in inactivating the positive element.

机构信息

National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.

出版信息

Biophys J. 2009 Dec 2;97(11):2867-75. doi: 10.1016/j.bpj.2009.09.008.

Abstract

Reversible phosphorylation of proteins is ubiquitous in circadian systems, but the role it plays in generating rhythmicity is not completely understood. A common mechanism for most circadian rhythms involves a negative feedback loop between the positive and negative elements. Here, we built a minimal model for the Neurospora crassa circadian clock based on the core negative feedback loop and the protein FREQUENCY (FRQ)-dependent phosphorylation of the White Collar Complex (WCC). The model can reproduce basic features of the clock, such as the period length, phase relationship, and entrainment to light/dark cycles. We found that the activity of WCC can be controlled by FRQ in a switchlike manner owing to zero-order ultrasensitivity. WCC is inactivated when FRQ level crosses a threshold from below. As a result, low cooperativity in transcriptional activation is sufficient for circadian rhythms, and the level of active WCC exhibits spiky oscillations. Such oscillations are robust to molecular noise and may subserve controlling circadian output. Therefore, the core negative feedback together with phosphorylation of the positive element can ensure robust circadian rhythms. Our work provides insights into the critical roles of posttranslational modification in circadian clocks.

摘要

蛋白质的可逆磷酸化在生物钟系统中普遍存在,但它在产生节律性方面的作用尚未完全了解。大多数生物钟的一个常见机制涉及正、负元件之间的负反馈回路。在这里,我们基于核心负反馈回路和 FRQ(FREQUENCY)依赖性的白色领结复合物(WCC)磷酸化,构建了一个粗糙脉孢菌生物钟的最小模型。该模型可以再现生物钟的基本特征,如周期长度、相位关系以及对光/暗周期的适应。我们发现,由于零阶超敏性,FRQ 可以以开关方式控制 WCC 的活性。当 FRQ 水平从下方越过阈值时,WCC 失活。因此,转录激活的低协同性足以产生生物钟节律,并且活性 WCC 的水平表现出尖峰振荡。这种振荡对分子噪声具有鲁棒性,可能用于控制生物钟输出。因此,核心负反馈加上正元件的磷酸化可以确保稳健的生物钟节律。我们的工作为翻译后修饰在生物钟中的关键作用提供了新的见解。

相似文献

6
A model for the Neurospora circadian clock.一种粗糙脉孢菌生物钟的模型。
Biophys J. 2005 Apr;88(4):2369-83. doi: 10.1529/biophysj.104.053975. Epub 2005 Jan 14.
9
The neurospora circadian system.粗糙脉孢菌生物钟系统。
J Biol Rhythms. 2004 Oct;19(5):414-24. doi: 10.1177/0748730404269116.

引用本文的文献

2
The Goodwin model: behind the Hill function.古德温模型:希尔函数背后的原理。
PLoS One. 2013 Aug 1;8(8):e69573. doi: 10.1371/journal.pone.0069573. Print 2013.
3
Stochastic pulse regulation in bacterial stress response.细菌应激反应中的随机脉冲调控。
Science. 2011 Oct 21;334(6054):366-9. doi: 10.1126/science.1208144. Epub 2011 Oct 6.

本文引用的文献

3
Interlocked feedback loops of the circadian clock of Neurospora crassa.粗糙脉孢菌生物钟的连锁反馈环。
Mol Microbiol. 2008 Apr;68(2):255-62. doi: 10.1111/j.1365-2958.2008.06148.x. Epub 2008 Feb 26.
5
The Neurospora crassa circadian clock.粗糙脉孢菌生物钟。
Adv Genet. 2007;58:25-66. doi: 10.1016/S0065-2660(06)58002-2.
6
A genetic network for the clock of Neurospora crassa.粗糙脉孢菌生物钟的遗传网络
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2809-14. doi: 10.1073/pnas.0611005104. Epub 2007 Feb 14.
10
Proteins in the Neurospora circadian clockworks.粗糙脉孢菌生物钟机制中的蛋白质。
J Biol Chem. 2006 Sep 29;281(39):28489-93. doi: 10.1074/jbc.R600018200. Epub 2006 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验