Suppr超能文献

多功能超薄氮化硅纳米膜。

Versatile ultrathin nanoporous silicon nitride membranes.

机构信息

Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21039-44. doi: 10.1073/pnas.0911450106. Epub 2009 Nov 30.

Abstract

Single- and multiple-nanopore membranes are both highly interesting for biosensing and separation processes, as well as their ability to mimic biological membranes. The density of pores, their shape, and their surface chemistry are the key factors that determine membrane transport and separation capabilities. Here, we report silicon nitride (SiN) membranes with fully controlled porosity, pore geometry, and pore surface chemistry. An ultrathin freestanding SiN platform is described with conical or double-conical nanopores of diameters as small as several nanometers, prepared by the track-etching technique. This technique allows the membrane porosity to be tuned from one to billions of pores per square centimeter. We demonstrate the separation capabilities of these membranes by discrimination of dye and protein molecules based on their charge and size. This separation process is based on an electrostatic mechanism and operates in physiological electrolyte conditions. As we have also shown, the separation capabilities can be tuned by chemically modifying the pore walls. Compared with typical membranes with cylindrical pores, the conical and double-conical pores reported here allow for higher fluxes, a critical advantage in separation applications. In addition, the conical pore shape results in a shorter effective length, which gives advantages for single biomolecule detection applications such as nanopore-based DNA analysis.

摘要

单纳米孔膜和多纳米孔膜在生物传感和分离过程中都非常有趣,因为它们能够模拟生物膜。孔的密度、形状和表面化学性质是决定膜传输和分离能力的关键因素。在这里,我们报告了具有完全可控孔隙率、孔径几何形状和孔表面化学性质的氮化硅(SiN)膜。我们描述了一种具有超薄独立 SiN 平台的技术,该平台具有圆锥形或双圆锥形纳米孔,直径小至几纳米,采用刻蚀技术制备。该技术允许将膜的孔隙率从每平方厘米一个孔调至数十亿个孔。我们通过基于电荷和大小对染料和蛋白质分子进行区分来证明这些膜的分离能力。这个分离过程基于静电机制,并在生理电解质条件下运行。正如我们所展示的,通过化学修饰孔壁可以调整分离能力。与具有圆柱形孔的典型膜相比,这里报道的圆锥形和双圆锥形孔允许更高的通量,这在分离应用中是一个关键优势。此外,圆锥形孔形状导致有效长度更短,这在基于纳米孔的 DNA 分析等单个生物分子检测应用中具有优势。

相似文献

1
Versatile ultrathin nanoporous silicon nitride membranes.多功能超薄氮化硅纳米膜。
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21039-44. doi: 10.1073/pnas.0911450106. Epub 2009 Nov 30.
8
Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes.超薄自立蚕丝丝素纳米纤维膜。
Nano Lett. 2016 Jun 8;16(6):3795-800. doi: 10.1021/acs.nanolett.6b01195. Epub 2016 May 17.

引用本文的文献

5
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.受限于个位数纳米孔中的流体和电解质。
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
6
Chemically tailoring nanopores for single-molecule sensing and glycomics.化学修饰纳米孔用于单分子传感和糖组学研究。
Anal Bioanal Chem. 2020 Oct;412(25):6639-6654. doi: 10.1007/s00216-020-02717-2. Epub 2020 Jun 1.
8
Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter.使用特斯拉线圈打火机创建纳米孔的按钮方法。
ACS Omega. 2019 Jan 4;4(1):226-230. doi: 10.1021/acsomega.8b02660. eCollection 2019 Jan 31.

本文引用的文献

3
Ultrafast permeation of water through protein-based membranes.水通过蛋白质基膜的超快渗透。
Nat Nanotechnol. 2009 Jun;4(6):353-7. doi: 10.1038/nnano.2009.90. Epub 2009 Apr 26.
5
The potential and challenges of nanopore sequencing.纳米孔测序的潜力与挑战。
Nat Biotechnol. 2008 Oct;26(10):1146-53. doi: 10.1038/nbt.1495.
6
Molecular discrimination inside polymer nanotubules.聚合物纳米管内的分子鉴别
Nat Nanotechnol. 2008 Feb;3(2):112-7. doi: 10.1038/nnano.2008.6. Epub 2008 Feb 3.
7
Solid-state nanopores.固态纳米孔
Nat Nanotechnol. 2007 Apr;2(4):209-15. doi: 10.1038/nnano.2007.27. Epub 2007 Mar 4.
8
Ionic selectivity of single nanochannels.单个纳米通道的离子选择性
Nano Lett. 2008 Jul;8(7):1978-85. doi: 10.1021/nl800949k. Epub 2008 Jun 18.
9
Ion exclusion by sub-2-nm carbon nanotube pores.亚2纳米碳纳米管孔隙对离子的排斥作用。
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17250-5. doi: 10.1073/pnas.0710437105. Epub 2008 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验