Wang Wei, Collinger Jennifer L, Perez Monica A, Tyler-Kabara Elizabeth C, Cohen Leonardo G, Birbaumer Niels, Brose Steven W, Schwartz Andrew B, Boninger Michael L, Weber Douglas J
Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA.
Phys Med Rehabil Clin N Am. 2010 Feb;21(1):157-78. doi: 10.1016/j.pmr.2009.07.003.
This article reviews neural interface technology and its relationship with neuroplasticity. Two types of neural interface technology are reviewed, highlighting specific technologies that the authors directly work with: (1) neural interface technology for neural recording, such as the micro-ECoG BCI system for hand prosthesis control, and the comprehensive rehabilitation paradigm combining MEG-BCI, action observation, and motor imagery training; (2) neural interface technology for functional neural stimulation, such as somatosensory neural stimulation for restoring somatosensation, and non-invasive cortical stimulation using rTMS and tDCS for modulating cortical excitability and stroke rehabilitation. The close interaction between neural interface devices and neuroplasticity leads to increased efficacy of neural interface devices and improved functional recovery of the nervous system. This symbiotic relationship between neural interface technology and the nervous system is expected to maximize functional gain for individuals with various sensory, motor, and cognitive impairments, eventually leading to better quality of life.
本文综述了神经接口技术及其与神经可塑性的关系。文中回顾了两种类型的神经接口技术,重点介绍了作者直接参与研究的特定技术:(1)用于神经记录的神经接口技术,如用于手部假肢控制的微皮层脑电图脑机接口系统,以及结合脑磁图脑机接口、动作观察和运动想象训练的综合康复模式;(2)用于功能性神经刺激的神经接口技术,如用于恢复躯体感觉的躯体感觉神经刺激,以及使用重复经颅磁刺激和经颅直流电刺激来调节皮层兴奋性和中风康复的非侵入性皮层刺激。神经接口设备与神经可塑性之间的密切相互作用导致神经接口设备的疗效提高,以及神经系统功能恢复的改善。神经接口技术与神经系统之间的这种共生关系有望为各种感觉、运动和认知障碍的个体实现功能增益最大化,最终带来更高的生活质量。