Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA.
Opt Lett. 2009 Dec 1;34(23):3704-6. doi: 10.1364/OL.34.003704.
Recent progress in optical coherence tomography (OCT) allows imaging dynamic structures and fluid flow within scattering tissue, such as the beating heart and blood flow in mouse embryos. Accurate representation and analysis of these dynamic behaviors require reducing the noise of the acquired data. Although noise can be reduced by averaging multiple neighboring pixels in space or time, such operations reduce the effective spatial or temporal resolution that can be achieved. We have developed a computational postprocessing technique to restore image sequences of cyclically moving structures that preserves frame rate and spatial resolution. The signal-to-noise ratio (SNR) is improved by combining images from multiple cycles that have been synchronized with a temporally elastic registration procedure. Here we show how this technique can be applied to OCT images of the circulatory system in cultured mouse embryos. Our technique significantly improves the SNR while preserving temporal and spatial resolution.
最近在光学相干断层扫描(OCT)方面的进展使得能够对散射组织内的动态结构和流体流动进行成像,例如跳动的心脏和小鼠胚胎中的血流。为了准确表示和分析这些动态行为,需要减少所获取数据的噪声。尽管可以通过在空间或时间上平均多个相邻像素来减少噪声,但这种操作会降低可以实现的有效空间或时间分辨率。我们已经开发了一种计算后处理技术,用于恢复周期性运动结构的图像序列,同时保持帧率和空间分辨率。通过结合使用具有时间弹性配准过程同步的多个周期的图像,可以提高信噪比(SNR)。在这里,我们展示了如何将该技术应用于培养的小鼠胚胎循环系统的 OCT 图像。我们的技术在保持时间和空间分辨率的同时,显著提高了 SNR。