Suppr超能文献

利用超快谱域光学相干断层成像技术对胚胎鸡心脏流出道血流和壁应变速率进行体内功能成像。

In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography.

机构信息

University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA.

出版信息

J Biomed Opt. 2012 Sep;17(9):96006-1. doi: 10.1117/1.JBO.17.9.096006.

Abstract

During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.

摘要

在心脏发育过程中,心脏壁和流动的血液是两个相互作用的重要心脏组织。这种动态相互作用定义了胚胎心脏所暴露的适当生物力学环境。定量评估壁组织和血流的动态参数对于进一步了解心脏发育是必要的。我们报告了使用超快 1310nm 双相机光谱域光相干断层扫描(SDOCT)系统,同时对活体跳动鸡胚中心肌壁的动态径向应变速率和下面流动血液的多普勒速度进行成像/特征描述。OCT 系统以 184kHz 的线扫描速率运行,提供了在一次扫描中成像快速血流和缓慢组织变形的灵活性。同时对组织运动和血流进行特征描述的能力为更好地理解早期发育阶段的心脏动力学提供了一种有用的方法。

相似文献

4
Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography.
IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2153851. Epub 2011 May 12.
9
Quantification of cardiac fiber orientation using optical coherence tomography.
J Biomed Opt. 2008 May-Jun;13(3):030505. doi: 10.1117/1.2937470.

引用本文的文献

1
The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research.
Biomedicines. 2024 Dec 13;12(12):2835. doi: 10.3390/biomedicines12122835.
2
Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning.
Biomed Opt Express. 2023 Apr 6;14(5):1945-1958. doi: 10.1364/BOE.481657. eCollection 2023 May 1.
3
Bioimaging of Dissolvable Microneedle Arrays: Challenges and Opportunities.
Research (Wash D C). 2022 Aug 1;2022:9758491. doi: 10.34133/2022/9758491. eCollection 2022.
5
Animal Models for Heart Valve Research and Development.
Drug Discov Today Dis Models. 2017 Summer;24:55-62. doi: 10.1016/j.ddmod.2018.04.001. Epub 2018 May 28.
6
Complex regression Doppler optical coherence tomography.
J Biomed Opt. 2018 Apr;23(4):1-8. doi: 10.1117/1.JBO.23.4.046009.
7
Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited].
Biomed Opt Express. 2017 Feb 24;8(3):1823-1837. doi: 10.1364/BOE.8.001823. eCollection 2017 Mar 1.
8
Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities.
Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1150-H1159. doi: 10.1152/ajpheart.00188.2016. Epub 2016 Aug 19.
10
Capturing structure and function in an embryonic heart with biophotonic tools.
Front Physiol. 2014 Sep 23;5:351. doi: 10.3389/fphys.2014.00351. eCollection 2014.

本文引用的文献

4
Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography.
Phys Med Biol. 2011 Nov 21;56(22):7081-92. doi: 10.1088/0031-9155/56/22/006. Epub 2011 Oct 21.
6
In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT.
Biomed Opt Express. 2011 Jul 1;2(7):1794-02. doi: 10.1364/BOE.2.001794. Epub 2011 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验