Suppr超能文献

一种新的用于检测肺癌 GWAS 中遗传相互作用的有效方法。

A new efficient method to detect genetic interactions for lung cancer GWAS.

机构信息

Quantitative Biomedical Science Program, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.

Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, One Medical Center Dr., Lebanon, NH, 03756, USA.

出版信息

BMC Med Genomics. 2020 Oct 30;13(1):162. doi: 10.1186/s12920-020-00807-9.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-wide scale is limited due to computational and statistical challenges. We addressed the computational burden encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and implemented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated with age of disease-onset.

METHODS

To demonstrate efficacy, we evaluated this method on two simulation data sets to estimate the type I error rate and power. Simulations showed that ES-MDR identified interactions using less computational workload and allowed for adjustment of covariates. We applied ES-MDR on the OncoArray-TRICL Consortium data with 14,935 cases and 12,787 controls for lung cancer (SNPs = 108,254) to search over all two-way interactions to identify genetic interactions associated with lung cancer age-of-onset. We tested the best model in an independent data set from the OncoArray-TRICL data.

RESULTS

Our experiment on the OncoArray-TRICL data identified many one-way and two-way models with a single-base deletion in the noncoding region of BRCA1 (HR 1.24, P = 3.15 × 10), as the top marker to predict age of lung cancer onset.

CONCLUSIONS

From the results of our extensive simulations and analysis of a large GWAS study, we demonstrated that our method is an efficient algorithm that identified genetic interactions to include in our models to predict survival outcomes.

摘要

背景

全基因组关联研究(GWAS)已通过单基因座模型成功证明了其在预测疾病遗传风险方面的作用;然而,由于计算和统计方面的挑战,在全基因组范围内识别单核苷酸多态性(SNP)相互作用受到了限制。我们解决了在检测与疾病发病年龄相关的 SNP 相互作用时遇到的计算负担问题,例如疾病发病年龄。为了应对这一问题,我们开发了一种新算法,称为高效生存多因素降维(ES-MDR)方法,该方法使用马氏残差作为结局参数来估计生存结局,并实施了定量多因素降维方法来识别与疾病发病年龄相关的显著相互作用。

方法

为了证明该方法的有效性,我们在两个模拟数据集上评估了该方法,以估计Ⅰ型错误率和功效。模拟结果表明,ES-MDR 使用较少的计算工作量来识别相互作用,并允许调整协变量。我们将 ES-MDR 应用于 OncoArray-TRICL 联盟数据,该数据包含 14935 例病例和 12787 例对照的肺癌数据(SNP=108254),以搜索所有的双向相互作用,以识别与肺癌发病年龄相关的遗传相互作用。我们在来自 OncoArray-TRICL 数据的独立数据集上测试了最佳模型。

结果

我们对 OncoArray-TRICL 数据的实验鉴定了许多具有 BRCA1 非编码区单个碱基缺失的单因素和双因素模型(HR 1.24,P=3.15×10),作为预测肺癌发病年龄的最佳标志物。

结论

从我们对大规模 GWAS 研究的广泛模拟和分析的结果来看,我们证明了我们的方法是一种有效的算法,该算法可用于识别遗传相互作用,以纳入我们的模型来预测生存结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82b6/7596958/e4812487e735/12920_2020_807_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验