Ang Kai Keng, Chin Zheng Yang, Zhang Haihong, Guan Cuntai
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:578-81. doi: 10.1109/IEMBS.2009.5332817.
The Filter Bank Common Spatial Pattern (FBCSP) algorithm performs autonomous selection of key temporal-spatial discriminative EEG characteristics in motor imagery-based Brain Computer Interfaces (MI-BCI). However, FBCSP is sensitive to outliers because it involves multiple estimations of covariance matrices from EEG measurements. This paper proposes a Robust FBCSP (RFBCSP) algorithm whereby the estimates of the covariance matrices are replaced with the robust Minimum Covariance Determinant (MCD) estimator. The performance of RFBCSP is investigated on a publicly available dataset and compared against FBCSP using 10x10-fold cross-validation accuracies on training data, and session-to-session transfer kappa values on independent test data. The results showed that RFBCSP yielded improvements in certain subjects and slight improvement in overall performance across subjects. Analysis on one subject who improved suggested that outliers were excluded from the robust covariance matrices estimation. These results revealed a promising direction of RFBCSP for robust classifications of EEG measurements in MI-BCI.
滤波器组公共空间模式(FBCSP)算法在基于运动想象的脑机接口(MI-BCI)中对关键的时空判别性脑电图特征进行自主选择。然而,FBCSP对异常值敏感,因为它涉及从脑电图测量中对协方差矩阵进行多次估计。本文提出了一种鲁棒FBCSP(RFBCSP)算法,其中协方差矩阵的估计被鲁棒的最小协方差行列式(MCD)估计器所取代。在一个公开可用的数据集上研究了RFBCSP的性能,并使用训练数据上的10×10倍交叉验证准确率以及独立测试数据上的会话间转移kappa值与FBCSP进行比较。结果表明,RFBCSP在某些受试者中取得了改进,并且在所有受试者的整体性能上有轻微提升。对一名有所改善的受试者的分析表明,异常值被排除在鲁棒协方差矩阵估计之外。这些结果揭示了RFBCSP在MI-BCI中对脑电图测量进行鲁棒分类的一个有前景的方向。