Suppr超能文献

用于从人类脑电图中对运动想象运动进行脑解码的具有三维注意力的双线性神经网络。

Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG.

作者信息

Fan Chen-Chen, Yang Hongjun, Hou Zeng-Guang, Ni Zhen-Liang, Chen Sheng, Fang Zhijie

机构信息

State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China.

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049 China.

出版信息

Cogn Neurodyn. 2021 Feb;15(1):181-189. doi: 10.1007/s11571-020-09649-8. Epub 2020 Nov 10.

Abstract

Deep learning has achieved great success in areas such as computer vision and natural language processing. In the past, some work used convolutional networks to process EEG signals and reached or exceeded traditional machine learning methods. We propose a novel network structure and call it QNet. It contains a newly designed attention module: 3D-AM, which is used to learn the attention weights of EEG channels, time points, and feature maps. It provides a way to automatically learn the electrode and time selection. QNet uses a dual branch structure to fuse bilinear vectors for classification. It performs four, three, and two classes on the EEG Motor Movement/Imagery Dataset. The average cross-validation accuracy of 65.82%, 74.75%, and 82.88% was obtained, which are 7.24%, 4.93%, and 2.45% outperforms than the state-of-the-art, respectively. The article also visualizes the attention weights learned by QNet and shows its possible application for electrode channel selection.

摘要

深度学习在计算机视觉和自然语言处理等领域取得了巨大成功。过去,一些工作使用卷积网络来处理脑电图(EEG)信号,其性能达到或超过了传统机器学习方法。我们提出了一种新颖的网络结构并将其称为QNet。它包含一个新设计的注意力模块:3D-AM,用于学习EEG通道、时间点和特征图的注意力权重。它提供了一种自动学习电极和时间选择的方法。QNet使用双分支结构融合双线性向量进行分类。它在EEG运动运动/想象数据集上执行四类、三类和两类分类任务。分别获得了65.82%、74.75%和82.88%的平均交叉验证准确率,分别比当前最先进的方法高出7.24%、4.93%和2.45%。本文还对QNet学习到的注意力权重进行了可视化,并展示了其在电极通道选择方面的可能应用。

相似文献

1
Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG.
Cogn Neurodyn. 2021 Feb;15(1):181-189. doi: 10.1007/s11571-020-09649-8. Epub 2020 Nov 10.
3
A multiscale siamese convolutional neural network with cross-channel fusion for motor imagery decoding.
J Neurosci Methods. 2022 Feb 1;367:109426. doi: 10.1016/j.jneumeth.2021.109426. Epub 2021 Dec 10.
4
Two-branch 3D convolutional neural network for motor imagery EEG decoding.
J Neural Eng. 2021 Aug 13;18(4). doi: 10.1088/1741-2552/ac17d6.
5
Motor imagery recognition with automatic EEG channel selection and deep learning.
J Neural Eng. 2021 Feb 11;18(1). doi: 10.1088/1741-2552/abca16.
6
[Convolutional neural network based on temporal-spatial feature learning for motor imagery electroencephalogram signal decoding].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):1-9. doi: 10.7507/1001-5515.202007006.
8
A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1170-1180. doi: 10.1109/TNSRE.2019.2915621. Epub 2019 May 8.
9
10
Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination.
Neural Netw. 2020 Sep;129:55-74. doi: 10.1016/j.neunet.2020.05.032. Epub 2020 May 29.

引用本文的文献

1
5
Deep learning in neuroimaging data analysis: Applications, challenges, and solutions.
Front Neuroimaging. 2022 Oct 26;1:981642. doi: 10.3389/fnimg.2022.981642. eCollection 2022.
6
[Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):418-425. doi: 10.7507/1001-5515.202205069.
8
Empirical comparison of deep learning methods for EEG decoding.
Front Neurosci. 2023 Jan 10;16:1003984. doi: 10.3389/fnins.2022.1003984. eCollection 2022.

本文引用的文献

1
Stability Analysis for Delayed Neural Networks via Improved Auxiliary Polynomial-Based Functions.
IEEE Trans Neural Netw Learn Syst. 2019 Aug;30(8):2562-2568. doi: 10.1109/TNNLS.2018.2877195. Epub 2018 Dec 18.
2
Improved Stability Analysis for Delayed Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4535-4541. doi: 10.1109/TNNLS.2017.2743262. Epub 2017 Nov 9.
3
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
4
Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading.
IEEE Trans Neural Netw Learn Syst. 2018 Aug;29(8):3588-3598. doi: 10.1109/TNNLS.2017.2732240. Epub 2017 Aug 18.
5
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
6
Augmented Complex Common Spatial Patterns for Classification of Noncircular EEG From Motor Imagery Tasks.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):1-10. doi: 10.1109/TNSRE.2013.2294903.
7
MEG and EEG data analysis with MNE-Python.
Front Neurosci. 2013 Dec 26;7:267. doi: 10.3389/fnins.2013.00267.
8
Robust filter bank common spatial pattern (RFBCSP) in motor-imagery-based brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:578-81. doi: 10.1109/IEMBS.2009.5332817.
9
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验