Brychta Robert J, Rothney Megan P, Skarulis Monica C, Chen Kong Y
Clinical Endocrinology Branch of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA. brychtar@ niddk.nih.gov
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6864-8. doi: 10.1109/IEMBS.2009.5333121.
Whole-room indirect calorimeters are capable of measuring human metabolic rate in conditions representative of quasi-free-living state through measurement of oxygen consumption (VO2) and carbon dioxide production (VCO2). However, the relatively large room size required for patient comfort creates low signal-to-noise ratio for the VO2 and VCO2 signals. We proposed a wavelet-based approach to efficiently remove noise while retaining important dynamic changes in the VO2 and VCO2. We used correlated noise modeled from gasinfusion experiments superimposed on theoretical VO2 sequences to test the accuracy of a wavelet based processing method. The wavelet filtering is demonstrated to improve the accuracy and sensitivity of minute-to-minute changes in VO2, while maintaining stability during steady-state periods. The wavelet method is shown to have a lower mean absolute error and reduced total error when compared to standard methods of processing calorimeter signals.
全室间接热量计能够通过测量耗氧量(VO2)和二氧化碳产生量(VCO2),在接近自由生活状态的条件下测量人体代谢率。然而,为了让患者感到舒适而需要的相对较大的房间尺寸,会导致VO2和VCO2信号的信噪比很低。我们提出了一种基于小波的方法,以有效去除噪声,同时保留VO2和VCO2中重要的动态变化。我们使用了从气体注入实验建模得到的相关噪声叠加在理论VO2序列上,来测试基于小波的处理方法的准确性。结果表明,小波滤波提高了VO2每分钟变化的准确性和灵敏度,同时在稳态期间保持稳定性。与处理热量计信号的标准方法相比,小波方法的平均绝对误差更低,总误差也更小。