Bost Wolfgang, Stracke Frank, Weiss Eike C, Narasimhan Sankar, Kolios Michael C, Lemor Robert
Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5883-6. doi: 10.1109/IEMBS.2009.5334452.
Photoacoustic imaging--also called optoacoustic imaging--is a new hybrid modality of high tissue contrast which is based on the varying optical properties of tissue. The acoustic signal generated by pulsed laser absorption reports tissue-specific information with high spatial resolution. To increase the intrinsic contrast in tissue, absorbing particles are of great interest for optical imaging because of their considerable capacity to absorb and scatter light at visible and near-infrared wavelengths. The aim of the work presented here is to establish a scalable photoacoustic technology for volume imaging of biological samples down to diffraction limited microscopy. For this purpose a versatile photoacoustic microscopy platform has been developed with unmatched spatial resolution consisting of a microchip laser and a measurement cell with different transducers attached allowing generation and detection of laser-induced ultrasound signals in a frequency range up to 400 MHz. The performance of a versatile photoacoustic microscopy platform was evaluated via 2D optoacoustic images of light absorbing microparticles (5 microm Fe(3)0(4) and 1 micromblack toner particles) embedded in a polystyrene matrix. High frequency signals in the frequency range of 400 MHz generated by a single 1 microm particle could be recorded with a high signal to noise ratio (SNR) of 34 dB.
光声成像——也称为光热声学成像——是一种基于组织光学特性变化的新型高组织对比度混合成像方式。脉冲激光吸收产生的声学信号能以高空间分辨率报告组织特异性信息。为了增加组织的固有对比度,吸收颗粒因其在可见光和近红外波长下具有相当强的吸收和散射光的能力,在光学成像中备受关注。本文所展示工作的目的是建立一种可扩展的光声技术,用于对生物样本进行直至衍射极限显微镜分辨率的体积成像。为此,已开发出一种具有无与伦比空间分辨率的通用光声显微镜平台,它由一个微芯片激光器和一个带有不同换能器的测量单元组成,能够在高达400 MHz的频率范围内产生和检测激光诱导的超声信号。通过对嵌入聚苯乙烯基质中的吸光微粒(5微米的Fe(3)0(4)和1微米的黑色碳粉颗粒)的二维光声图像,评估了通用光声显微镜平台的性能。单个1微米颗粒产生的400 MHz频率范围内的高频信号能够以34 dB的高信噪比记录下来。