Wang Lihong V, Yao Junjie
Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.
Nat Methods. 2016 Jul 28;13(8):627-38. doi: 10.1038/nmeth.3925.
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.
生命科学可以从将微观发现与宏观观察联系起来的成像技术中受益匪浅。光声断层扫描(PAT)是一种能够提供此类益处的独特技术,它是一种灵敏的成像方式,可在一系列空间尺度上高速成像光学吸收对比度。在光声断层扫描中,内源性对比度揭示了组织的解剖、功能、代谢和组织学特性,而外源性对比度则提供分子和细胞特异性。光声断层扫描的空间尺度涵盖细胞器、细胞、组织、器官和小动物。因此,光声断层扫描在对比度机制、穿透深度、空间分辨率和时间分辨率方面与其他成像方式互补。我们回顾了光声断层扫描的基本原理,并提供了使光声断层扫描系统与研究需求相匹配的实用指南。我们还总结了光声断层扫描最有前景的生物医学应用,讨论了相关挑战,并展望了光声断层扫描带来进一步突破的潜力。
Nat Methods. 2016-7-28
Curr Opin Chem Biol. 2018-4-7
Ultrason Imaging. 2016-1
Neurophotonics. 2014-5-28
Science. 2012-3-23
Contrast Media Mol Imaging. 2011
J Biomed Opt. 2016-6
Curr Treat Options Cardiovasc Med. 2025
Front Optoelectron. 2025-8-14
JPhys Photonics. 2025-7-31
IEEE Trans Comput Imaging. 2024
Biomed Opt Express. 2016-3-14
Biomed Opt Express. 2015-9-3
Photoacoustics. 2015-3-14
J Cereb Blood Flow Metab. 2015-8
Ultrason Imaging. 2016-1