Plant Physiology and Molecular Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland.
Plant Physiol. 2010 Feb;152(2):723-35. doi: 10.1104/pp.109.150250. Epub 2009 Dec 4.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by "state 2" light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.
根据光的数量和质量,光合作用系统 II(PSII)及其光捕获天线(LHCII)的几种蛋白质会发生可逆磷酸化。然而,在类囊体膜中,蛋白质磷酸化、非光化学猝灭和电子传递效率之间的相互依赖关系仍然难以捉摸。为了解决这些问题,我们平行研究了野生型和 stn7、stn8 和 stn7 stn8 激酶突变体拟南芥(Arabidopsis thaliana),同时使用 stn7 npq4、npq4、npq1 和 pgr5 突变体作为对照。PSII-LHCII 蛋白的磷酸化强烈且动态地根据白光强度进行调节。然而,磷酸化的变化并没有明显改变 PSII 和 PSI 之间相对激发能的分布,通常情况下,当通过选择性激发 PSII 并诱导 PSII 核心和 LHCII 蛋白磷酸化的“状态 2”光诱导磷酸化时,就会发生这种情况。相反,在低光照条件下,当 LHCII 到反应中心的激发能量转移有效时,STN7 依赖性 LHCII 蛋白磷酸化可确保将激发能量平衡分配到两个光系统。在高光照下,当诱导激发能量的热耗散时,这种调节的重要性会降低。缺乏 STN7 激酶,从而无法将激发能量均等分配给 PSII 和 PSI,导致在低光照下 PSII 相对过激发,但在高光下不会,从而导致在光强波动下电子流的流动受到干扰。STN7 依赖性调节的生理相关性由 stn7 和 stn7 stn8 突变体在强烈波动的光照条件下严重发育不良的表型所证明。