Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland.
Plant Physiol. 2012 Dec;160(4):1896-910. doi: 10.1104/pp.112.206466. Epub 2012 Oct 2.
According to the "state transitions" theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.
根据“状态转变”理论,植物叶绿体中光捕获复合物 II(LHCII)的磷酸化对于调整光质变化时光合系统 II(PSII)和 PSI 的相对吸收截面是必不可少的。LHCII 磷酸化在光强变化中的作用尚未得到充分研究,尤其是当光强变化太快以至于无法使磷酸化/去磷酸化过程发生时。在这里,我们证明拟南芥(Arabidopsis thaliana)stn7(代表状态转变 7)突变体,由于 PSI 数量较少,在快速变化的白光下缺乏 STN7 激酶和 LHCII 磷酸化,仅表现出生长缺陷。在恒定的生长光条件下,stn7 通过增加 PSI 中心的相对数量来获得叶绿体氧化还原稳态。因此,在植物叶绿体中,稳态 LHCII 磷酸化在快速波动的白光强度下对 PSI 的保护起着主要作用。这种 PSI 的保护源自 LHCII 磷酸化依赖性地将激发能均等分配给共享 LHCII 天线的 PSII 和 PSI,并与非光化学猝灭和质子梯度调节 5 依赖的电子流控制合作发生,这同样受到白光强度的严格调节。LHCII 磷酸化被认为既是叶绿体氧化还原稳态的稳定剂(在秒到分钟的时间尺度上),也是动态调节剂(在几十分钟到几小时和几天的时间尺度上),受环境和代谢线索的修饰。LHCII 磷酸化/去磷酸化的能力超过了平衡 PSII 和 PSI 之间激发能分布的能力,导致光系统化学计量的重新调整。