Schöneboom Jan C, Neese Frank, Thiel Walter
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2005 Apr 27;127(16):5840-53. doi: 10.1021/ja0424732.
Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex Fe(O)(NH(3))(4)(H(2)O) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex Fe(O)(TMC)(CH(3)CN) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes Fe(O)(TMP)(X) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.
量子力学/分子力学(QM/MM)方法已与密度泛函理论(DFT)及相关的从头算方法结合使用,以预测细胞色素P450(cam)中化合物I的电子顺磁共振(EPR)和穆斯堡尔(MB)性质。为校准目的,研究了一种小型的Fe(IV)-氧配合物[Fe(O)(NH₃)₄(H₂O)]²⁺。发现³A₂和⁵A₁态(在C₄ᵥ对称中)能量相差在0.1 - 0.2 eV以内。³A₂态中(FeO)²⁺单元的大零场分裂(ZFS)源于与低能五重态和单重态的自旋 - 轨道耦合。本征g - 各向异性非常小。模型配合物[Fe(O)(TMC)(CH₃CN)]²⁺(TMC = 1,4,8,11 - 四甲基 - 1,4,8,11 - 四氮杂环十四烷)的光谱性质能被理论很好地重现。在模型配合物[Fe(O)(TMP)(X)]⁺(TMP = 四 - 对甲苯基卟啉,X = 无或H₂O)中,计算再次解释了观察到的光谱性质,并预测(FeO)²⁺单元的⁵A₁态与卟啉自由基的耦合导致一个低能六重态/四重态多重态,比四重基态高约12 kcal/mol。对细胞色素P450(cam)的计算,无论有无通过点电荷模拟蛋白质环境,都预测存在小的反铁磁耦合(J约为 - 13至 - 16 cm⁻¹;H(HDvV) = - 2JS(A)S(B))和大的ZFS > 15 cm⁻¹(E/D约为1/3),这将与交换耦合相互竞争。这导致了三个混合多重性的克莱默斯二重态,在室温下都有填充,因此可能对观察到的反应性有贡献。MB和配体超精细耦合(¹⁴N,¹H)对蛋白质环境相当敏感,蛋白质环境控制着卟啉环和轴向半胱氨酸配体之间的自旋密度分布。