Suppr超能文献

投影域滤波去噪结合双边滤波和 CT 噪声模型在 CT 中降低剂量

Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT.

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

出版信息

Med Phys. 2009 Nov;36(11):4911-9. doi: 10.1118/1.3232004.

Abstract

PURPOSE

To investigate a novel locally adaptive projection space denoising algorithm for low-dose CT data.

METHODS

The denoising algorithm is based on bilateral filtering, which smooths values using a weighted average in a local neighborhood, with weights determined according to both spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus maintaining high spatial resolution. A CT noise model that takes into account the bowtie filter and patient-specific automatic exposure control effects is also incorporated into the denoising process. The authors evaluated the noise-resolution properties of bilateral filtering incorporating such a CT noise model in phantom studies and preliminary patient studies with contrast-enhanced abdominal CT exams.

RESULTS

On a thin wire phantom, the noise-resolution properties were significantly improved with the denoising algorithm compared to commercial reconstruction kernels. The noise-resolution properties on low-dose (40 mA s) data after denoising approximated those of conventional reconstructions at twice the dose level. A separate contrast plate phantom showed improved depiction of low-contrast plates with the denoising algorithm over conventional reconstructions when noise levels were matched. Similar improvement in noise-resolution properties was found on CT colonography data and on five abdominal low-energy (80 kV) CT exams. In each abdominal case, a board-certified subspecialized radiologist rated the denoised 80 kV images markedly superior in image quality compared to the commercially available reconstructions, and denoising improved the image quality to the point where the 80 kV images alone were considered to be of diagnostic quality.

CONCLUSIONS

The results demonstrate that bilateral filtering incorporating a CT noise model can achieve a significantly better noise-resolution trade-off than a series of commercial reconstruction kernels. This improvement in noise-resolution properties can be used for improving image quality in CT and can be translated into substantial dose reduction.

摘要

目的

研究一种新的局部自适应投影空间去噪算法用于低剂量 CT 数据。

方法

该去噪算法基于双边滤波,它通过在局部邻域中使用加权平均值来平滑值,权重根据中心像素与邻域像素之间的空间接近度和强度相似性来确定。这种滤波是局部自适应的,可以保留射线图像中的重要边缘信息,从而保持高空间分辨率。还将一种考虑了弓带状滤过器和患者特定自动曝光控制效果的 CT 噪声模型纳入到去噪过程中。作者在体模研究和初步的增强腹部 CT 检查的患者研究中评估了纳入这种 CT 噪声模型的双边滤波的噪声分辨率特性。

结果

在细线体模上,与商用重建核相比,该去噪算法显著提高了噪声分辨率特性。经过去噪后,低剂量(40 mA s)数据的噪声分辨率特性接近两倍剂量水平的常规重建。一个单独的对比板体模显示,当噪声水平相匹配时,与常规重建相比,该去噪算法可以更好地显示低对比度的对比板。在 CT 结肠成像数据和五例腹部低能(80 kV)CT 检查中也发现了类似的噪声分辨率特性的改善。在每个腹部病例中,一位经过董事会认证的专业放射科医师对去噪的 80 kV 图像的质量评分明显高于商用重建,并且去噪可以将图像质量提高到 80 kV 图像单独即可视为诊断质量的程度。

结论

结果表明,纳入 CT 噪声模型的双边滤波可以实现比一系列商用重建核更好的噪声分辨率折衷。这种噪声分辨率特性的改善可用于提高 CT 图像质量,并可转化为显著的剂量降低。

相似文献

2
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.
3
Denoising of polychromatic CT images based on their own noise properties.
Med Phys. 2016 May;43(5):2251. doi: 10.1118/1.4945022.
6
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.

引用本文的文献

1
Efficient sparse-view medical image classification for low radiation and rapid COVID-19 diagnosis.
Biomed Eng Lett. 2025 May 22;15(4):785-795. doi: 10.1007/s13534-025-00478-4. eCollection 2025 Jul.
2
Multi-scale perceptual modulation network for low-dose computed tomography denoising.
Quant Imaging Med Surg. 2024 Dec 5;14(12):9290-9305. doi: 10.21037/qims-24-1145. Epub 2024 Nov 29.
3
Reconstructing and analyzing the invariances of low-dose CT image denoising networks.
Med Phys. 2025 Jan;52(1):188-200. doi: 10.1002/mp.17413. Epub 2024 Sep 30.
4
Benchmarking deep learning-based low-dose CT image denoising algorithms.
Med Phys. 2024 Dec;51(12):8776-8788. doi: 10.1002/mp.17379. Epub 2024 Sep 17.
5
A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention.
J Imaging Inform Med. 2025 Apr;38(2):1245-1264. doi: 10.1007/s10278-024-01254-z. Epub 2024 Sep 11.
6
Investigating the use of signal detection information in supervised learning-based image denoising with consideration of task-shift.
J Med Imaging (Bellingham). 2024 Sep;11(5):055501. doi: 10.1117/1.JMI.11.5.055501. Epub 2024 Sep 5.
7
Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies.
J Imaging Inform Med. 2025 Apr;38(2):902-930. doi: 10.1007/s10278-024-01213-8. Epub 2024 Sep 4.
8
Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
Quant Imaging Med Surg. 2024 Aug 1;14(8):5571-5590. doi: 10.21037/qims-24-68. Epub 2024 Jul 26.
9
Dose robustness of deep learning models for anatomic segmentation of computed tomography images.
J Med Imaging (Bellingham). 2024 Jul;11(4):044005. doi: 10.1117/1.JMI.11.4.044005. Epub 2024 Aug 1.

本文引用的文献

2
Image covariance and lesion detectability in direct fan-beam x-ray computed tomography.
Phys Med Biol. 2008 May 21;53(10):2471-93. doi: 10.1088/0031-9155/53/10/002. Epub 2008 Apr 18.
3
On the origin of the bilateral filter and ways to improve it.
IEEE Trans Image Process. 2002;11(10):1141-51. doi: 10.1109/TIP.2002.801126.
5
Computed tomography--an increasing source of radiation exposure.
N Engl J Med. 2007 Nov 29;357(22):2277-84. doi: 10.1056/NEJMra072149.
6
Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT.
Acad Radiol. 2007 Dec;14(12):1441-7. doi: 10.1016/j.acra.2007.09.016.
7
Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease.
Invest Radiol. 2007 Dec;42(12):823-9. doi: 10.1097/RLI.0b013e3181379bac.
8
Patient radiation doses from adult and pediatric CT.
AJR Am J Roentgenol. 2007 Feb;188(2):540-6. doi: 10.2214/AJR.06.0101.
9
Material differentiation by dual energy CT: initial experience.
Eur Radiol. 2007 Jun;17(6):1510-7. doi: 10.1007/s00330-006-0517-6. Epub 2006 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验