Department of Radiology, University of Chicago, 5841 S. Maryland Avenue Chicago, Illinois 60637, USA.
Med Phys. 2009 Nov;36(11):4920-32. doi: 10.1118/1.3232211.
The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT).
The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p = 1.0 or the image roughness when p = 2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography.
The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses.
Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.
作者开发了一种实用的、迭代的欠采样层析成像系统(如数字乳腺断层合成术(DBT))图像重建算法。
该算法通过最小化图像总 p 变差(TpV)来控制图像的正则性,当 p=1.0 时,该函数简化为总变差,当 p=2.0 时,该函数简化为图像粗糙度。通过凸集投影来强制约束图像,例如图像正定性和估计的投影数据容限。层析成像系统欠采样的事实转化为数学性质,即许多变化很大的结果体积可能对应于给定的数据容限。因此,图像正则化的应用有两个目的:(1)在固定数据容限的情况下,减少允许的结果体积数量,找到固定数据容限下的最小图像 TpV,以及(2)传统正则化,牺牲数据保真度以获得更高的图像正则性。本算法允许图像正则化在欠采样层析成像中发挥这种双重作用。
将提出的图像重建算法应用于三个临床 DBT 数据集。DBT 病例包括一个有微钙化,两个有肿块。
结果表明,对于微钙化成像,使用本图像重建算法可能具有很大的优势。